Week 10: BFS & Shortest Paths

Algorithms & Data Structures

Thorben Klabunde
th-kl.ch

November 24, 2025

www.th-kl.ch

© Mini-Quiz

© Assignment

© Breadth-First Search
e Weighted Graphs

© Shortest Paths in DAGs
© Dijkstra’s Algorithm

@ Additional Practice

Mini-Quiz

If a directed graph has no directed cycles then there is no back edge in any DFS tree of it.

® True
O False

Q2

Consider the graph below.

a

()

What is a valid adjacency list for vertex c?

Oa [q
@b [bd

Quiz

Decide whether the following are true or false.

True False
O ® If a directed graph has a sink, then it has no directed cycle.
O] O If a directed graph has no directed cycle, then it has a sink.

Scoring method: Subpoints @

Let u, v be two vertices connected via an edge in an undirected graph. Suppose we compute a DFS
tree of this graph. It is possible that pre(u) < post(u) < pre(v) < post(v).

OTrue

@ False

Suppose we have a directed graph with 2 different directed cycles. We need to remove at least 2 edges
for a topological order to exist in the graph.

OTrue

@ False

Recall the notation S,” used to refer to the set of vertices at distance ¢ from some vertex u, in some

directed graph D. Assume that there exists a vertex w with w € S3 and w € S3. Then, the graph
distance from u to v in D is at most 5.

OTrue

@ False

Suppose that we run a BFS on a directed graph and after sorting by the enter-time the vertices are
d,e,b,a,c, f. What would the order be if we sorted by leave-time instead?

O a. f,c,a,bed.

® b. d,eb,a,c,f.

O ¢ a,b,c,de,f.

O d. f,e,d,c,b,a.

O e. Impossible to specify with the current information.

Clear my choice

Consider the graph below.

What is the minimum value of & for which there is no negative directed cycle?

Answer:

Mini-Quiz

Consider the graph below.

What is the length of the shortest path from a to e?

Answer:| 7

Mini-Quiz

Consider the queue @ = [3,5, 2,4, 1]. Suppose we carry out the following operations:

1. dequeue
2. dequeue
3. enqueue(1)
4. enqueue(4)

What is the final state of the queue? The enqueue operation adds an element to the right/end of the
queue.

Oa Q=[3,524,1]
Ob Q=[3,521,4
®c Q=[2,4,1,1,4
Od Q=[2,4,1,4,1]

Clear my choice

Assignment

Feedback Assignments 8

Well done overall! Some common points:

e Ex. 8.1 (Handshake Lemma): Well done! Just make sure that you first explicitly
model the situation as a graph in order to apply graph theory. Otherwise, you are
dealing with undefined quantities.

o Ex. 8.3

o Be precise, e.g., define any specific neighbors you talk about and make your reasoning
explicit.

o Use the terminology introduced in the lecture. For instance, when arguing about
connectedness, you can argue in terms of connected components, which have a precise
definition and for which you can use all the properties shown in the lecture.

o Even though these simpler proofs lend themselves to intuitive argument, be rigorous and
practice formalizing them. Be careful with intuitive arguments (when too vague) and
proofs by example or visual sketches for existence proofs (for counterexample a visual
example is sufficient).

Remember to check the detailed feedback on Moodle! Reach out if you have any questions
regarding the corrections.

Exercise 9.4 Bipartite graphs, Eulerian graphs and painting rooms (2 points).
In this exercise, you can use Theorem 1 above.

(a)* Prove Theorem 1.

There is a much simpler proof than shown in the master solution, which uses BFS. We'll see
this later!

(b) Prove or disprove the following statements:

(1) Every graph G that is bipartite and Eulerian must have an even number of edges.

?(‘ooc? E

le¢ G=(AWR,E) de a (putice SNPL\ %A paréon AR

Since K is Balenen [that exigfs @ closed Ealenon oalle
Let Vo be the Ef.u&'m\g Vu€ex and (_).(/O.\S, le€ 0oe 4.

Noo Skffom Soc ke oF conradichon Hat |AWR(wag oofol.

: Dofice Sirst that e e E (lenAl=1) le ooy edie Sleas {efoean
o o A ool R (7 LS. oF S/‘Fq.f‘fm'fe/\@‘&

Thea sincg [AR(s ot andk Ge Solloo @ clogest OalleoF
(QA&LZA Ao/, ve Fink U,e B | @ contradiction .

TL Sollovs tat [Ao/ jseven,

(c) You recently moved in with your best friend (see floor plan below) and you would like to repaint
the room walls. Every room should be painted either in red or in purple (as these are your favorite
colors), and you also would like that whenever you walk from a room to another room through a
door, the color changes. Is that possible?

Note that there are 7 rooms (i.e. the Hallway, the Bathroom and the Kitchen are counted as rooms).

Best friend’s room Bar

__| Bathroom Hallway

Entrance

Living room

‘Your room —

Kitchen

Ex. 9.4

We first model the above floor plan as the following graph, where the vertices represent the different
rooms of the flat, and two vertices are conncted with an edge whenever there is a door between the
two corresponding rooms.

Best friend’s room

Bar

Bathroom

Living room

Your room

Kitchen

Do check F the &\\Q(DL s A-colorelle | (., &//bufféc_

K7 Thm. [, g 6ra(ol\ cannot (e (//“oczréf& gmce. € confains Ra oc/o(—(u&% Gele. 0

Assignment

Breadth-First Search

Breadth-First Search

Motivation: Finding Shortest Paths in Unweighted Graphs

Problem: Find the shortest path from a start vertex to all other vertices.

()
- (A] O -
Key observation:

@ In an unweighted graph, shortest path =
path with fewest edges

2 e e G 2 o DFS doesn't guarantee shortest paths!

@ We need to explore level by level

3

Solution: Breadth-First Search (BFS)

Numbers = distance from S

Breadth-First Search

BFS: The Idea

Strategy: Explore vertices in order of their distance from the start

Algorithm sketch:

@ Start at vertex s, mark distance 0 Level-by-level exploration

Level 0

@ Explore all neighbors of s (distance 1)

@ Then explore all their neighbors (distance
2)

@ Continue level by level...

Data structure: Queue (FIFO)
@ Enqueue: Add to back

o Dequeue: Remove from front

Key property: BFS visits vertices in order of increasing distance!

Breadth-First Search

BFS: Pseudocode

1: function BFS(G = (V,E),s € V)

2: Initialize dist[v] + oo for all v € V

3 dist[s] «+ 0

4: Q « {s} > Initialize queue with start vertex
5: while Q # () do

6 u + dequeue(Q)

7 for each edge (u,v) € E do

8 if v not yet visited (i.e., dist[v] = co) then

9 dist[v] « dist[u] + 1

10: enqueue(Q, v)

Key observations

@ Each vertex enters the queue at most once
@ Vertices are dequeued in order of increasing distance

@ Runtime: O(|V/|+ |E|) with adjacency list (analogously to DFS)

Breadth-First Search

BFS: Visual Example

Execution trace:

Step Queue Process
0 {A} -
1 {B, C} A
2 {C, D, E} B
3 {D, E, F} C
4 {E, F, G} D
5 {F, G} E
6 {G, H} F
7 {H} G
8 {} H

Distances from A:
dist[A] =0 dist[E] =2
dist[B] =1 dist[F] =2
dist[C] =1 dist[G] =3
dist[D] =2 dist[H] =3

Breadth-First Search

BFS vs DFS: Comparison

BFS DFS
Data Structure Queue (FIFO) Stack (LIFO) / Recursion
Exploration Level-by-level Deep-first, then backtrack
Shortest Paths (unweighted)
Space Complexity O(|V|) o(|V))
Time Complexity O(|V|+ |E|) o(|V| + |El)
Applications Shortest paths Topological sort

Connected components Cycle detection
Path existence

Rule of thumb: Use BFS when you care about distance, use DFS when you care about
structure (cycles, connectivity, ordering).

Breadth-First Search

Proof of Theorem 1

Theorem 1. A graph is bipartite if and only if it does not contain any cycle of odd length.
Proof.
Hint: Use BFS to color the vertices.

Breadth-First Search

Proof of Theorem 1

Theorem 1. A graph G = (AW B, E) is bipartite if and only if it contains no odd cycles.

(=) 0Odd cycle implies not bipartite

@ Let C be an odd cycle (vi,v2,. .., vk, v1)

(where k is odd).

@ In a valid bicoloring, adjacent vertices
must flip colors.

@ Flipping colors an odd number of times
means v; and vk have the same color.

@ The edge (vk, v1) therefore connects two
vertices of the same color. G cannot be
bipartite.

(<) No odd cycles implies bipartite
Assume G does not contain any odd cycles.

Run BFS and color layer L; based on parity of i.

Suppose for contradiction that some edge

(u, v) € E connects nodes of the same color.

Note: Edges only link Lj <> Li11 or Li <> L;.

Same color = same parity =— u, v must be in
the same layer L;.

Let w be the lowest common ancestor of u and v
in the BFS tree and notice that the paths w ~ u
and w ~» v have the same length d.

Cycle w ~» u — v ~» w has odd length
d+1+d=2d+1, a contradiction.

Hence, we never color two vertices with the same color
and G is bipartite O

Breadth-First Search

Weighted Graphs

Weighted Graphs

From Unweighted to Weighted Graphs

Real-world motivation: Not all edges are equall!
Examples:

@ Road networks: distances vary

@ Flight routes: costs/times differ

o Networks: bandwidth varies

Definition
A weighted graph G = (V, E, c) has a cost
function:

Weighted: Shortest path is (A, B, C, D) (cost 3)

Unweighted: Shortest path is (A, D) (1 edge)
c:E—-R

Fewer edges doesn’t mean lower cost!

assigning a cost c(e) to each edge e € E.

Important: BFS no longer works! We need different algorithms.

Weighted Graphs

Shortest Paths: Problem Definition

Definition: Path Cost

For a path P = (v, v1,...,), the cost is:
-1
c(P) == c(vo,v1) + c(vi,v2) + -+ c(ve—1,v) = Z c(vi, viy1)
i=0

Definition: Distance

The distance from u to v is:
d(u, v) := min{c(P) | P is a path from u to v}

If no path exists, d(u, v) = oo.

Key question: What if edge costs can be negative?

Weighted Graphs

The Problem with Negative Edge Costs

Negative edges complicate things!
Example 1: Negative cycle

Example 2: Negative edge (OK)

Shortest path (A, D): (A, C, D) (cost 2)

This is fine—no negative cycles!
Cycle cost: 44 (=7)+2= -1

Going around the cycle decreases cost!
= No shortest path exists

| Key insight: Negative edges are OK, but negative cycles make shortest paths undefined |
Weighted Graphs

Assumption for Today: Non-Negative Edge Costs

For the rest of this lecture, we assume:

c(e) >0 forallec E

Why this assumption helps

@ Guarantees shortest paths exist (if paths exist at all)
@ Enables greedy algorithms like Dijkstra

@ In many settings a reasonable assumption

What about graphs with negative edges but no negative cycles?
o Dijkstra’s algorithm fails
= This week’s lecture: Bellman-Ford

Weighted Graphs

Shortest Paths in DAGs

Shortest Paths in DAGs

Shortest Paths in DAGs

Recall from last week:

Question: What if our weighted graph is a DAG (Directed Acyclic Graph)?
Key advantage:

@ No directed cycles = we have a
2 topological ordering!
3 ° 4 ° ! @ Remember: If (v;,v;) € E, then i <j in
° the ordering
N0

3 Intuition:
0 @ Process vertices left-to-right

@ When we process v;, all predecessors are
already done

Can we exploit this structure to find shortest paths efficiently?

Shortest Paths in DAGs

Your Turn: Derive a Recurrence

Task: Suppose we have a topological ordering vy, va, ..., v, of our DAG, with v; = s (start
vertex).

Question: How can we express d(s, vk) (shortest distance to vj) in terms of distances to
vertices that come before v in the ordering?

Hints:
@ Any path to v, must come from some predecessor
@ In topological order, all predecessors of vy have index < k
@ What's the base case?

Time: 3-4 minutes

Shortest Paths in DAGs

Shortest Paths in DAGs

Solution: Recurrence for DAG Shortest Paths

Recurrence
For a DAG with topological ordering vy, va, ..., v, where v; = s:
Base case:

d(s,v1) =d(s,s) =0

Recursion: For k > 2,

min _{d(s,v;) + c(vi, vk)} if vk has predecessors
. (V,',Vk)eE
d(sa Vk) - i<k

00 if vk unreachable from s

Correctness (informal):
@ Any path to v, must pass through some predecessor v; (with i < k)

@ The shortest such path is the minimum over all predecessors

Shortest Paths in DAGs

Algorithm: Shortest Paths in DAGs

1: function DAG-SHORTESTPATH(G, s)
2 Topologically sort V: vy,...,v,
3 Initialize d[v] < oo, d[s] + 0
4: for u in topological order do
5 for each neighbor v of u do > Outgoing edges
6 d[v] < min(d[v], d[u] + ¢(u, v))
Runtime Analysis:
e Topological sort: O(|V|+ |E|)
e Main loop:) o\ 1+ deg;,(v) = O(|V|+|E|)
e Total: O(|V|+ |E|)

Shortest Paths in DAGs

Example: DAG Shortest Paths

Process in order:
Q A d[A]=0
Q B: d[B]=d[A]+3=3

3 5
3 e 2 e 1 Q C: d[C]=d[A]+5=5
4 .
5 e ViaB: d[B]+2=5
e 3 o Via C: d[C]+4=9

5 o d[D] =5
. Q@ E: d[E]=d[C]+1=6
Q F:
o ViaD: d[D]+1=6
o Via E: d[E]+3=9
o d[F]=6

Result: Shortest path to F is (A, B, D, F) with cost 6

Topological order: A, B, C,D, E, F

Shortest Paths in DAGs

Key Insight: Why DAGs are Easy

The crucial observation:

Subproblem Ordering

In a DAG with topological ordering, we have a natural order to process vertices:
@ When computing d(s, vk), all dependencies d(s, v;) with i < k are already computed

@ Dynamic Programming!

What we need: In DAGs:
@ A recurrence relation @ We derived the recurrence
@ An ordering that respects dependencies @ Topological order gives us this for free!

Question: What if the graph has cycles? Can we still use this approach?

Shortest Paths in DAGs

Dijkstra’s Algorithm

Dijkstra’s Algorithm

The Challenge: Undirected Graphs

So far: DAGs = topological ordering ensures all predecessors processed before each vertex
But what about undirected graphs (or directed graphs with cycles)?
The problem:

@ Every vertex can be reached from every
other vertex (in cycles)

@ No "natural” ordering that guarantees all
predecessors are processed

What do we do?
@ We need a different invariant

No topological ordering possible

@ Cannot rely on structure

@ Must enforce correct processing order
ourselves!

Challenge: How can we ensure we've found the shortest path to each vertex?

Dijkstra’s Algorithm

Dijkstra’s Algorithm: The Idea

Solution: Enforce a stronger invariant — process vertices in order of increasing distance!

Dijkstra’s Invariant

Maintain a set S of vertices for which we've determined the shortest distance.
Key property: Always add the closest unprocessed vertex to S next.
This ensures: d(s,v1) < d(s,v2) < --- < d(s, v,) for processing order.

Why this works:
@ When we add v to S with distance d S
@ Any other path to v must leave S at some e
point ’ i
@ That path has length > d (by @‘
non-negative weights and our greedy
choice)

Always pick closest unprocessed vertex
@ So d is indeed the shortest distance!

Dijkstra’s Algorithm

Your Turn: Run Dijkstra’s Algorithm

Task: Run Dijkstra's algorithm on the graph below starting from s. Show the order in which
vertices are added to S and the final distances.

Think about: How is this similar to the DAG approach? How is it different?

Time: 5-6 minutes

Dijkstra’s Algorithm

Comparison: DAG vs. Dijkstra

DAG Algorithm Dijkstra’s Algorithm
Processing order Topological order Strictly increasing distance from s
Guarantee All predecessors processed before All closer vertices processed before
each vertex each vertex
Why correct? No "later” vertex can provide No "farther" vertex can provide
shortcut (DAG structure) shortcut (non-negative weights +
greedy choice)
Finding order Free! (topological sort) Must build greedily
Recurrence d(s, vi) = ming, v,ickid(s, vi) + c(vi, i) }

Key insight: Both use the same recurrence, but Dijkstra needs a stricter processing
order because it lacks the DAG structure!

Dijkstra’s Algorithm

Why Building the Ordering is Correct

Lemma (assuming non-negative costs)

Let S be the set of the k — 1 closest vertices to s. Let v* ¢ S be the vertex with the minimum
tentative distance.

Claim: d[v*] is the shortest path to v*, and therefore v* is the k-th closest vertex.

Proof Sketch: Let P be any path from s to v*.
@ Path P starts in S and ends outside, so it must cross the boundary.
@ Let (u,v) be the first edge in P where u € Sand v ¢ S.
© We lower-bound the cost of P:

c(P) > d(s,u) + c(u,v) (non-negative weights)
> d[v] (definition of tentative distance)
> d[v*] (Greedy Choice: we picked v* over v)

@ Conclusion: No path to v* is shorter than d[v*]. Since v* is the closest of the remaining
vertices, it is the k-th closest overall. O

Dijkstra’s Algorithm

Correctness of The Priority Queue

Recall our recurrence:
d(s,v) = mig {d(s, u) + c(u, v)}
ue

u— vy
This says: to compute shortest distance to vk, we need to consider all edges from vertices in S
to vg.
In Dijkstra's algorithm, we do this efficiently using a priority queue (min-heap):

@ We extract one vertex v* at a time from the priority queue

o We only relax edges from that one vertex

@ We never explicitly enumerate all edges from S to find the minimum

Question: How do we know that v* is the vertex that achieves the minimum in the
recurrence?
Why is extracting one vertex at a time sufficient?

Dijkstra’s Algorithm

Dijkstra: The Invariant

Key insight: The priority queue maintains tentative distances that already incorporate all
edges from S seen so far.

Invariant (maintained throughout algorithm)
At any point, for each vertex v ¢ S:

dlvl = min {dle] + c(u,v)}
(u,v)EE

That is, d[v] stores the best distance to v using any edge from S.

Why this is maintained:
@ Initially: S =10, d[s] =0, all others d[v] = o0
@ When we add vertex v to S:
o We relax all edges (u, v): update d[v] = min{d[v], d[u] + c(u, v)}
o This incorporates the new edges from u into all tentative distances

@ So d[v] always reflects the minimum over all u€ S

Dijkstra’s Algorithm

Why Extracting the Minimum is Correct

When we extract v* with minimal d[v*]:

Two crucial properties

Q@ d[v*] = minyes (uv+)eeld[u] + c(u,v*)} (by invariant) = correct distance

@ d[v*] < d[v] for all v ¢ S (by extraction from min-heap)

What this means:

o Property (1): d[v*] already accounts for all possible ways to reach v* from S

*

@ Property (2): v* is the closest unprocessed vertex

*

@ Together: v* is exactly the vertex that achieves the minimum in our recurrence!

Key point: By maintaining the invariant incrementally, the priority queue always gives
us the next vertex in distance order, with its correct final distance.

Dijkstra’s Algorithm

Questions?

Dijkstra’s Algorithm

Additional Practice

Additional Practice

Modified BFS

Exercise 10.4 Number of minimal paths (1 point).

Let G = (V, E) be an undirected graph with n vertices and m edges. Let v,v" € V be two distinct
vertices and suppose that the distance between the two is k.

Describe an algorithm which counts the number of paths from v to v’ of length k. The runtime of
your algorithm should be at most O(n + m). You are provided with the number of vertices n, and the
adjacency list Adj of G. Argue why your algorithm is correct and why it satisfies the runtime bound.

Hint: Modify BFS.

Additional Practice

Additional Practice

Additional Practice

Modified BFS

Key Observation

The number of shortest paths to v; must equal the sum of all paths of length i — 1 ending at
neighbors of v; that are at distance i — 1 from v.

Algorithm: We run a BFS starting from v. We maintain an array paths|[| where paths|[u]
stores the number of minimal paths from v to u and an array dist[], which stores dist(v, u).

o Initialize: paths[v] = 1, all others 0; dist[v] = 0 all others —1.

@ When exploring neighbor w of u:
o If dist[w] < 0: Set dist[w] = dist[u] + 1, paths[w] = paths[u] and enqueue w.

o If dist{w] = dist[u] 4+ 1: Update paths|w]| = paths[w] + paths[u].
Once BFS finishes, we return paths[v’].

Additional Practice

Modified BFS - Solution

Recurrence:

Formally, for each vertex v; at distance i from v, we compute:

1 ifi=0(.e., vi=v)
paths[v;] = Z paths[u] ifi>1

u€S; 1

(U,V,')EE

where Sy = {u € V| dist(v,u) = k € N}

Additional Practice

Proof of Correctness (1/2)

Proof. We prove that (i) the recurrence is correct and (ii) that BFS proceeds in correct order
and terminates.

(1) Correctness of Recurrence:

Let v/ € V be a vertex at distance i € N from v.
e If i=0, then v = v’ and trivially there exists exactly one path.

@ For i > 0, suppose for sake of contradiction that we would need to consider vertices at
distance t < i — 1. But then dist(v, v') < i, since we can construct a shorter path, a
contradiction. Analogously, if we considered t > i — 1, we would consider non-minimal
paths, a contradiction. Hence, we only need to consider the set S;_;.

Since we can continue every path ending at a neighbor at distance / — 1 with exactly one edge
to v/, summing over the number of paths is correct.

Additional Practice

Proof of Correctness (2/2)

(2) Correctness of Computation Order

It remains to show that BFS computes the recurrence in correct order and terminates. We
proceed by induction on the distance k € N.

o B.C.: Let kK =0 and notice that the only vertex at distance 0 is the starting vertex. We
correctly initialize this to 1. When BFS dequeues the starting vertex, the number of paths
is correct.

@ I.H.: Assume that for some k € N and an arbitrary vertex v/ € V at distance k from v,
paths[v'] has been correctly computed, when BFS dequeues v'.

Additional Practice

Proof of Correctness (2/2)

(2) Correctness of Computation Order (ctd.)

@ I.S.: Now let v/ be an arbitrary vertex at distance k + 1 and assume it has just been
dequeued.

We know from the lecture that
o BFS processes all nodes in S; before processing any node in S;11, meaning all vk € S have
already been dequeued and processed.

By I.H. paths|vi] is correct for all vi € Sk, in particular for the neighbors of v’ at distance k.

o Since each v € Sk is enqueued and dequeued exactly once, we have already computed
Z paths[u] correctly (also see Correctness of Recurrence).

ueS; 1
(u,v;)EE

It follows that paths[v’] has been computed correctly when we dequeue v'.

Termination: Since the graph is finite and BFS visits each connected vertex exactly once, the
algorithm terminates and returns paths[v’]. O

Additional Practice

Runtime:

We inherit the runtime from BFS since we only add a constant number of operations per
edge, and can extract the solution in constant time. Hence, our algorithm runs in O(n+ m)

Additional Practice

Bonus: Longest Paths in DAGs

Exercise 9.4 (2024)

Let G = (V, E) be a directed graph without directed cycles (i.e., a directed acyclic graph or
short DAG).

Assume that V = {vy,...,v,} (for n = |V| € N) and that the sorting vy, v2,..., v, of the
vertices is a topological sorting.

The goal of this exercise is to find the longest path in G.

Exercise Structure
@ Part a): Properties of a path in G
e Part b): DP-algorithm for finding a longest path

Additional Practice

Part (a) - Order of a Path in G

Part (a)
Let P be a path in G. Prove that if P = (v, Vj,,..., Vi), then i < ip < -+ < k.

Additional Practice

Additional Practice

Part (a) - Order of a Path in G

Part (a)
Let P be a path in G. Prove that if P = (v, Vj,,..., Vi), then ii < ip < -+ < .

Proof.

Recall: A topological sorting is a linear order of vertices that satisfies all dependencies, i.e.,
for any edge (v, w) € E, we have that v comes before w in the sorting.

Notice:
o Given a path P = (vj, vj,..., V), its edges are (vi, Vi), (Vip, Vi) - - -5 (Vie_y, Vi)

@ Hence, for any vertex vj,, t € [k — 1], and successor v;,,,, we have iy < ipj1.

= The sequence of indeces (i1,..., i) is strictly increasing, i.e., i < ip < -+ < ig.
O

Additional Practice

Part (b) - Longest-Path Finding

Part (b)

Describe a bottom-up DP algorithm that returns the length of the longest path in G in
O(|V| + |E|) time.

Assume that G is provided as a pair (n, Adj) of the integer n = |V/| and the adjacency lists Adj.

Your algorithm can access Adj[u], which is a list of vertices to which u has a direct edge, in
constant time. Formally, Adj[u] :={v e V | (u,v) € E}.

Additional Practice

Additional Practice

Shortest vs. Longest Paths: Some Intuition

o Shortest Paths: Efficiently solvable (e.g., BFS,
Dijkstra).

o Greedy (local optimum — global optimum)
works.

o Longest Paths: Much harder...

e Undirected Graphs:

o Greedy (heaviest edge) often fails: can be a
trap (see example).

@ No simple decision order; may need
backtracking.

o DAGs
@ Key: no cycles enable topological sorting

@ Topological order guarantees that we have all
required information to make optimal decisions

a b
Additional Practice

Undirected Graph

100

10

do

10

G

b

Directed Graph (DAG)

D 100 L E
A
cT "i?F
A 10 -
BT "i?G
10 -
AY o H

Part (b) - Longest-Path Finding

Step-by-step calculation in reverse topological order

@ Dimensions of the DP-table:
DP[1...n], where n = |V/|

@ Meaning of each entry

DPJ[i] = length of the longest path starting
inv;, i €[n]

DP[1] = 4 DP[6] =0
(Alternatively: DP[i] = length of the longest
path ending in v;, i € [n].

Changes calc. order.) DP[3] =2 DP[5] =1

Additional Practice

Part (b) - Longest-Path Finding

Step-by-step calculation in reverse topological order

© Base Case

For sink v, we know deg,,.(v,) =0

= DP[n] =0

Recursion:

DP[1] = 4 DPI[6] = 0
ppyi] — [0 i Adilil == nul
1| =
1+ max{DP[Ad]j[i][k]] | 1 < k < Adj[i].length}

Additional Practice

Part (b) - Longest-Path Finding

Step-by-step calculation in reverse topological order

@ Correctness: For i € [n],

If v; is a sink, the longest path starting in
v; has length 0, since there are no
outgoing edges.

Else, the longest path starting in v; must
join a longest path among the successors
of v;, since assuming otherwise leads to a
contradiction. O DP[3] = 2 DP[5] = 1

DP[1] = 4 DP[6] = 0

Additional Practice

Part (b) - Longest-Path Finding

Step-by-step calculation in reverse topological order

© Calculation Order:
Fori=n—1,...,1, compute DPJi].

Correctness:

By Part (a), we know that all paths P =
(Vigs - - -, v,), satisfy jo < ... < ji.
Assume P is a longest path of length >=1
starting in vertex v; (i.e., v; = v}).

Notice that since jo < j1, DP[j1] already con-
tains the length of the longest path starting
in vj. DP[3] =2 DP[5] =1

By the correctness of the recursion, we cor-
rectly compute DP[js] = DPJi]. O

Additional Practice

Part (b) - Longest-Path Finding

Step-by-step calculation in reverse topological order

© Extracting Solution:
Extract solution by iterating over the array and maintaining maximum, i.e.,
max,-e[,,] DP[i]

Additional Practice

Part (b) - Longest-Path Finding

Step-by-step calculation in reverse topological order

@ Runtime:
Base Case: 0o(1) (1)
n Handsh. Lem.
Recursion: O(Z(l + degout(v;))> < Oo(|V|+|E]) (2)
i=1
Extr. Sol: o(|V)) (3)
Total: o(|V| + |E|) (4)

(1) Filling in B.C. requires a const. number of operations.
(2) Iterate over deg,,, neighbors for each vertex exactly once + extra operations (+1).

(3) Linear pass over vertices to extract max.

Additional Practice

	Mini-Quiz
	Assignment
	Breadth-First Search
	Weighted Graphs
	Shortest Paths in DAGs
	Dijkstra's Algorithm
	Additional Practice

