
Week 10: BFS & Shortest Paths

Algorithms & Data Structures

Thorben Klabunde

th-kl.ch

November 24, 2025

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

www.th-kl.ch

Agenda

1 Mini-Quiz

2 Assignment

3 Breadth-First Search

4 Weighted Graphs

5 Shortest Paths in DAGs

6 Dijkstra’s Algorithm

7 Additional Practice

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Mini-Quiz

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Assignment

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Feedback Assignments 8

Well done overall! Some common points:

Ex. 8.1 (Handshake Lemma): Well done! Just make sure that you first explicitly
model the situation as a graph in order to apply graph theory. Otherwise, you are
dealing with undefined quantities.

Ex. 8.3
Be precise, e.g., define any specific neighbors you talk about and make your reasoning

explicit.

Use the terminology introduced in the lecture. For instance, when arguing about

connectedness, you can argue in terms of connected components, which have a precise

definition and for which you can use all the properties shown in the lecture.

Even though these simpler proofs lend themselves to intuitive argument, be rigorous and

practice formalizing them. Be careful with intuitive arguments (when too vague) and

proofs by example or visual sketches for existence proofs (for counterexample a visual

example is su!cient).

Remember to check the detailed feedback on Moodle! Reach out if you have any questions
regarding the corrections.

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Ex. 9.4

There is a much simpler proof than shown in the master solution, which uses BFS. We’ll see
this later!

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Ex. 9.4

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Ex. 9.4

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Breadth-First Search

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Motivation: Finding Shortest Paths in Unweighted Graphs

Problem: Find the shortest path from a start vertex to all other vertices.

S

A B

C D E

T

0

1 1

2

2

2

3

Numbers = distance from S

Key observation:

In an unweighted graph, shortest path =
path with fewest edges

DFS doesn’t guarantee shortest paths!

We need to explore level by level

Solution: Breadth-First Search (BFS)

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

BFS: The Idea

Strategy: Explore vertices in order of their distance from the start

Algorithm sketch:
1 Start at vertex s, mark distance 0
2 Explore all neighbors of s (distance 1)
3 Then explore all their neighbors (distance

2)
4 Continue level by level...

Data structure: Queue (FIFO)

Enqueue: Add to back

Dequeue: Remove from front

Level-by-level exploration

S

A B C

D E

Level 0

Level 1

Level 2

Key property: BFS visits vertices in order of increasing distance!

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

BFS: Pseudocode

1: function BFS(G = (V ,E), s → V)

2: Initialize dist[v] ↑ ↓ for all v → V
3: dist[s] ↑ 0

4: Q ↑ {s} ω Initialize queue with start vertex

5: while Q ↔= ↗ do
6: u ↑ dequeue(Q)

7: for each edge (u, v) → E do
8: if v not yet visited (i.e., dist[v] = ↓) then
9: dist[v] ↑ dist[u] + 1

10: enqueue(Q, v)

Key observations

Each vertex enters the queue at most once

Vertices are dequeued in order of increasing distance

Runtime: O(|V |+ |E |) with adjacency list (analogously to DFS)

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

BFS: Visual Example

A

B C

D E F

G

H

Execution trace:
Step Queue Process
0

1

2

3

4

5

6

7

8

Distances from A:

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

BFS vs DFS: Comparison

BFS DFS

Data Structure Queue (FIFO) Stack (LIFO) / Recursion
Exploration Level-by-level Deep-first, then backtrack
Shortest Paths (unweighted)
Space Complexity O(|V |) O(|V |)
Time Complexity O(|V |+ |E |) O(|V |+ |E |)
Applications Shortest paths Topological sort

Connected components Cycle detection
Path existence

Rule of thumb: Use BFS when you care about distance, use DFS when you care about
structure (cycles, connectivity, ordering).

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Proof of Theorem 1

Theorem 1. A graph is bipartite if and only if it does not contain any cycle of odd length.

Proof.

Hint: Use BFS to color the vertices.

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Weighted Graphs

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

From Unweighted to Weighted Graphs

Real-world motivation: Not all edges are equal!

Examples:

Road networks: distances vary

Flight routes: costs/times di!er

Networks: bandwidth varies

Definition

A weighted graph G = (V ,E , c) has a cost
function:

c : E → R

assigning a cost c(e) to each edge e ↑ E .

A

B C

D
10

1

1

1

Unweighted: Shortest path is (A,D) (1 edge)

Weighted: Shortest path is (A,B,C ,D) (cost 3)

Fewer edges doesn’t mean lower cost!

Important: BFS no longer works! We need di!erent algorithms.

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Shortest Paths: Problem Definition

Definition: Path Cost

For a path P = (v0, v1, . . . , vω), the cost is:

c(P) := c(v0, v1) + c(v1, v2) + · · ·+ c(vω→1, vω) =
ω→1∑

i=0

c(vi , vi+1)

Definition: Distance

The distance from u to v is:

d(u, v) := min{c(P) | P is a path from u to v}

If no path exists, d(u, v) = ↓.

Key question: What if edge costs can be negative?

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

The Problem with Negative Edge Costs

Negative edges complicate things!

Example 1: Negative cycle

A

B

C

4

↘7
2

Cycle cost: 4 + (↘7) + 2 = ↘1

Going around the cycle decreases cost!

≃ No shortest path exists

Example 2: Negative edge (OK)

A

B

C

D

5

3

2

↘1

Shortest path (A,D): (A,C ,D) (cost 2)

This is fine—no negative cycles!

Key insight: Negative edges are OK, but negative cycles make shortest paths undefined
(can loop forever with decreasing cost).Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Assumption for Today: Non-Negative Edge Costs

For the rest of this lecture, we assume:

c(e) ↔ 0 for all e ↑ E

Why this assumption helps

Guarantees shortest paths exist (if paths exist at all)

Enables greedy algorithms like Dijkstra

In many settings a reasonable assumption

What about graphs with negative edges but no negative cycles?

Dijkstra’s algorithm fails

=↗ This week’s lecture: Bellman-Ford

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Shortest Paths in DAGs

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Shortest Paths in DAGs

Recall from last week:

Question: What if our weighted graph is a DAG (Directed Acyclic Graph)?

s

a

b

c

d

t

3

5

2

1

4

1

3

Key advantage:

No directed cycles ↗ we have a
topological ordering!

Remember: If (vi , vj) ↑ E , then i < j in
the ordering

Intuition:

Process vertices left-to-right

When we process vj , all predecessors are
already done

Can we exploit this structure to find shortest paths e”ciently?

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Your Turn: Derive a Recurrence

Task: Suppose we have a topological ordering v1, v2, . . . , vn of our DAG, with v1 = s (start
vertex).

Question: How can we express d(s, vk) (shortest distance to vk) in terms of distances to
vertices that come before vk in the ordering?

v1

v2

v3

· · · vk

Hints:

Any path to vk must come from some predecessor

In topological order, all predecessors of vk have index < k

What’s the base case?

Time: 3-4 minutes
Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Example: DAG Shortest Paths

A

B

C

D

E

F

3

5

2

1

4

1

3

0

3

5

5

6

6

Topological order: A, B, C, D, E, F

Process in order:
1 A: d [A] = 0

2 B: d [B] = d [A] + 3 = 3

3 C : d [C] = d [A] + 5 = 5

4 D:

Via B: d [B] + 2 = 5

Via C : d [C] + 4 = 9

d [D] = 5

5 E : d [E] = d [C] + 1 = 6

6 F :

Via D: d [D] + 1 = 6

Via E : d [E] + 3 = 9

d [F] = 6

Result: Shortest path to F is (A,B,D,F) with cost 6

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Key Insight: Why DAGs are Easy

The crucial observation:

Subproblem Ordering

In a DAG with topological ordering, we have a natural order to process vertices:

When computing d(s, vk), all dependencies d(s, vi) with i < k are already computed

Dynamic Programming!

What we need:
1 A recurrence relation
2 An ordering that respects dependencies

In DAGs:
1 We derived the recurrence
2 Topological order gives us this for free!

Question: What if the graph has cycles? Can we still use this approach?

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Dijkstra’s Algorithm

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

The Challenge: Undirected Graphs

So far: DAGs ↗ topological ordering ensures all predecessors processed before each vertex

But what about undirected graphs (or directed graphs with cycles)?

s

a

b

t

2

5

3

1

1

No topological ordering possible

The problem:

Every vertex can be reached from every
other vertex (in cycles)

No ”natural” ordering that guarantees all
predecessors are processed

What do we do?

We need a di!erent invariant

Cannot rely on structure

Must enforce correct processing order
ourselves!

Challenge: How can we ensure we’ve found the shortest path to each vertex?

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Dijkstra’s Algorithm: The Idea

Solution: Enforce a stronger invariant — process vertices in order of increasing distance!

Dijkstra’s Invariant

Maintain a set S of vertices for which we’ve determined the shortest distance.

Key property: Always add the closest unprocessed vertex to S next.

This ensures: d(s, v1) ↘ d(s, v2) ↘ · · · ↘ d(s, vn) for processing order.

Why this works:

When we add v to S with distance d

Any other path to v must leave S at some
point

That path has length ↔ d (by
non-negative weights and our greedy
choice)

So d is indeed the shortest distance!

S
s

· · · v→
min

Always pick closest unprocessed vertex

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Your Turn: Run Dijkstra’s Algorithm

Task: Run Dijkstra’s algorithm on the graph below starting from s. Show the order in which
vertices are added to S and the final distances.

s

a

b

c

d

t

2

4

3

1

5

2

1

Think about: How is this similar to the DAG approach? How is it di!erent?

Time: 5-6 minutes

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Comparison: DAG vs. Dijkstra

DAG Algorithm Dijkstra’s Algorithm

Processing order Topological order Strictly increasing distance from s

Guarantee All predecessors processed before
each vertex

All closer vertices processed before
each vertex

Why correct? No ”later” vertex can provide
shortcut (DAG structure)

No ”farther” vertex can provide
shortcut (non-negative weights +
greedy choice)

Finding order Free! (topological sort) Must build greedily

Recurrence d(s, vk) = min(vi ,vk),i<k{d(s, vi) + c(vi , vk)}

Key insight: Both use the same recurrence, but Dijkstra needs a stricter processing
order because it lacks the DAG structure!

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Why Building the Ordering is Correct

Lemma (assuming non-negative costs)

Let S be the set of the k → 1 closest vertices to s. Let v→ /↑ S be the vertex with the minimum
tentative distance.

Claim: d [v→] is the shortest path to v→, and therefore v→ is the k-th closest vertex.

Proof Sketch: Let P be any path from s to v→.
1 Path P starts in S and ends outside, so it must cross the boundary.
2 Let (u, v) be the first edge in P where u ↑ S and v /↑ S .
3 We lower-bound the cost of P :

c(P) ↓ d(s, u) + c(u, v) (non-negative weights)

↓ d [v] (definition of tentative distance)

↓ d [v→] (Greedy Choice: we picked v→
over v)

4 Conclusion: No path to v→ is shorter than d [v→]. Since v→ is the closest of the remaining
vertices, it is the k-th closest overall.

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Correctness of The Priority Queue

Recall our recurrence:
d(s, vk) = min

u↑S
u↓vk

{d(s, u) + c(u, vk)}

This says: to compute shortest distance to vk , we need to consider all edges from vertices in S
to vk .

In Dijkstra’s algorithm, we do this e!ciently using a priority queue (min-heap):

We extract one vertex v↔ at a time from the priority queue

We only relax edges from that one vertex

We never explicitly enumerate all edges from S to find the minimum

Question: How do we know that v↔ is the vertex that achieves the minimum in the
recurrence?
Why is extracting one vertex at a time su”cient?

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Dijkstra: The Invariant

Key insight: The priority queue maintains tentative distances that already incorporate all
edges from S seen so far.

Invariant (maintained throughout algorithm)

At any point, for each vertex v /↑ S :

d [v] = min
u↑S

(u,v)↑E

{d [u] + c(u, v)}

That is, d [v] stores the best distance to v using any edge from S .

Why this is maintained:
1 Initially: S = ≃, d [s] = 0, all others d [v] = ↓
2 When we add vertex u to S :

We relax all edges (u, v): update d [v] = min{d [v], d [u] + c(u, v)}
This incorporates the new edges from u into all tentative distances

3 So d [v] always reflects the minimum over all u ↑ S

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Why Extracting the Minimum is Correct

When we extract v↔ with minimal d [v↔]:

Two crucial properties

1 d [v↔] = minu↑S,(u,v→)↑E{d [u] + c(u, v↔)} (by invariant) =↗ correct distance

2 d [v↔] ↘ d [v] for all v /↑ S (by extraction from min-heap)

What this means:

Property (1): d [v↔] already accounts for all possible ways to reach v↔ from S

Property (2): v↔ is the closest unprocessed vertex

Together: v↔ is exactly the vertex that achieves the minimum in our recurrence!

Key point: By maintaining the invariant incrementally, the priority queue always gives
us the next vertex in distance order, with its correct final distance.

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Questions?

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Additional Practice

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Modified BFS

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Bonus: Longest Paths in DAGs

Exercise 9.4 (2024)

Let G = (V ,E) be a directed graph without directed cycles (i.e., a directed acyclic graph or
short DAG).

Assume that V = {v1, . . . , vn} (for n = |V | ↑ N) and that the sorting v1, v2, . . . , vn of the
vertices is a topological sorting.

The goal of this exercise is to find the longest path in G .

Exercise Structure

Part a): Properties of a path in G

Part b): DP-algorithm for finding a longest path

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Part (a) - Order of a Path in G

Part (a)

Let P be a path in G . Prove that if P = (vi1 , vi2 , . . . , vik), then i1 < i2 < · · · < ik .

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Part (b) - Longest-Path Finding

Part (b)

Describe a bottom-up DP algorithm that returns the length of the longest path in G in
O(|V |+ |E |) time.

Assume that G is provided as a pair (n,Adj) of the integer n = |V | and the adjacency lists Adj.

Your algorithm can access Adj[u], which is a list of vertices to which u has a direct edge, in
constant time. Formally, Adj[u] := {v ↑ V | (u, v) ↑ E}.

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

Mini-Quiz Assignment Breadth-First Search Weighted Graphs Shortest Paths in DAGs Dijkstra’s Algorithm Additional Practice

	Mini-Quiz
	Assignment
	Breadth-First Search
	Weighted Graphs
	Shortest Paths in DAGs
	Dijkstra's Algorithm
	Additional Practice

