Week 11: Bellman-Ford & MSTs

Algorithms & Data Structures

Thorben Klabunde
th-kl.ch

December 1, 2025

www.th-kl.ch

© Mini-Quiz

© Assignment

© Recap: Dijkstra

@ Bellman-Ford

© Minimum Spanning Trees

@ Additional Practice

Mini-Quiz

Assignment

Feedback Assignment 9

Common points:
o Ex. 9.3:
o a) Read carefully! Many proved that a general topological order exists but not the one
specified in the task.

o b) Be very precise regading the specific property you want to show, here: the indices form
a strictly increasing sequence.

e c) Don't forget the justification (both for correctness and runtime)! And justification
means explaining why not just what or how. In the exam this will lead to deductions.

o Ex. 9.4: Note that a closed walk # cycle. If you want to apply the argument that there
can be no odd cycles by Thm. 1, we need to decompose the closed Eulerian walk into
a disjoint set of cycles (which is possible, as shown in the lecture). This is an important
step since Thm. 1 does not state anything regarding closed walks.

Remember to check the detailed feedback on Moodle! Reach out if you have any questions
regarding the corrections.

10.3

Exercise 10.3 Driving on highways.

In order to encourage the use of train for long-distance traveling, the Swiss government has decided
to make all the m highways between the n major cities of Switzerland one-way only. In other words,
for any two of these major cities C; and C, if there is a highway connecting them it is either from C
to Cy or from Cj to C, but not both. The government claims that it is however still possible to drive
from any major city to any other major city using highways only, despite these one-way restrictions.

(a) Model the problem as a graph problem. Describe the set of vertices V' and the set of edges E in
words. Reformulate the problem description as a graph problem on the resulting graph.

(et V(e the seé of maior Soiss cides XL V=0 and (e€ thefe & o directed e
(M) Sor wuel |§ there exisés ¢ L@Lg)m? Stes v o L.

e wroas?cr\dl«'r\d 6?&?'—\ TM\((Q(\ 8 G0 defurming F thame exiiés o direetedk qul\ Frea (. to v
In q=QeE).

10.3

(b) Describe an algorithm that checks the correctness of the government’s claim in time O(n + m).
Argue why your algorithm is correct and why it satisfies the runtime bound.

Le€ Voe U Le ery‘éceq anek fan DFS, hqu/'n\y ek visited notes Lﬂ‘{((ﬂ(’/\é tle et §.

Neo conséract Q'=(V/E") vhich fs obfalneat revag alk odreg of Q.
Adﬂd'/\,f‘—\r\ DFS Star Uy onok QOHFHK e Gt S oF 0y OVeshies.

el S=8'=V &> el LUty Qri&&“j‘) connectedS.
ﬂ
(=) Assame $=V=§" andl (¢ uuvel e @é/'érqﬁ) and dithnal, Not'ee €4t & @apntes U enck U

i.e Ahere exict dir. fcfﬂ (Vo,.1t) anol (Ve,..., V) . By ded. o &' Uast then exist dir, fc#..r (w,..,‘u,,) anol (U Uo)in G.

A(\q(a&c'—\&{),ua Sinok ot gince $=U [uo feaches y ad U. 17 ﬁturv’ﬁ\’uf-(-? [Ragt reech 0 wdl Lie verga.

Snce wwu ae ac{¥cary Ge g Solloos.

(<=) < C(am\)

10.5

Exercise 10.5 Strongly connected vertices (1 point).

Let G = (V, E) be a directed graph with n vertices and m edges. We say two distinct vertices v,w € V'
are strongly connected if there exists both a directed path from v to w, and from w to v.

Describe an algorithm which finds a pair v, w € V' of strongly connected vertices in G, or decides that
no such pair exists. The runtime of your algorithm should be at most O(n +m). You are provided with
the number of vertices n, and the adjacency list Adj of G.

Hint: Use DFS as a subroutine.

10.5

Algorithm 2

: Input: integer n. Adjacency list Adj[1...n].

. Let status[1...n] be a global array, with all entries initialized to UNVISITED.

1
2
3
4
5: function visit(u)
6 status[u] < VISITING
7
8
9

for each v in Adj[u] do > Iterate over all neighbours v.
if status[v] = VISITING then > There is a directed cycle containing u and v.
Output (u, v) and terminate
10: if status[v] = UNVISITED then
11 visit(v)
122 status[u] < VISITED.
13: foru=1,2,...,ndo
14: if status[u] = UNVISITED then
15: visit(u]

16: Output "no strongly connected vertices exist”

Recap: Dijkstra

Recap: Dijkstra

Dijkstra's Algorithm: Quick Review

Last week: Dijkstra’s algorithm for weighted graphs with non-negative edge costs

The Idea:
@ Maintain set S of finalized vertices .
Runtime:
@ Greedily select closest unprocessed vertex
@ Add to S and relax outgoing edges O((|V|+|EJ) - log |V])

@ Use priority queue (min-heap) for efficiency
Why it works:

@ Non-negative costs ensure: any path
leaving S only gets more expensive

Key Invariant:

When v* is extracted from heap: . .
o — C(losest vertex in heap has final

d[v*] = d(s, v¥) distance
@ —> Greedy choice is safe!
(distance is final)

Recap: Dijkstra

Dijkstra’s Algorithm: Implementation (Java Style)

1:
2
3
4:
5:
6:
7
8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

function DIJKSTRA(G, s)
dist[] + co; dist[s]+ 0
PQ.add(new Node(s,0))

while PQ is not empty do

(u, d) «+ PQ.poll()

// 1. Check for stale entry

if d > dist[u] then
continue

end if

// 2. Relax Edges
for edge (u, v) with weight w do
if dist[u] + w < dist[v] then
dist[v] + dist[u] + w
PQ.add(new Node(v,dist[v]))
end if
end for

end while

21: end function

Recap: Dijkstra

The "Lazy” Logic

Why duplicates? If we find a shorter
path to v, we add a new pair
(v, dnew) to the PQ.

The old pair (v, dyjy) remains in the
PQ but sinks to the bottom.

The " Stale” Check (Line 7): When
we eventually pop (v, dyy), we see
that:

dojg > dist[v]

So we ignore it.

Bellman-Ford

Bellman-Ford

The Challenge: How to Handle Negative Edges?

Key observation about Dijkstra:

Dijkstra’s Strong Guarantee

When vertex v is extracted from heap, we know d[v] = d(s, v) is final.

We never need to reconsider v again!

With negative edges, we can’t make this strong guarantee.

Weaker Guarantee: ¢-good bounds

Instead of finalizing vertices one-by-one, we'll track:
"For which path lengths have we found optimal distances?”

After / iterations: d[v] is correct for all paths with < ¢ edges.

New strategy: Incrementally increase path length guarantees until we've covered all
possible paths.

Bellman-Ford

Understanding /-Good Bounds

Definition: ¢-good bound

For ¢ € Ny, define:

S<;:={v € V|3 path from s to v with < ¢ edges}

A distance estimate d[v] is ¢-good if:

d[v] d(s,v) if v eSS
~ | > d(s,v) otherwise

i.e., d[v] is exact for paths using < ¢ edges, and an upper bound otherwise

Base case (¢ =0): S<o = {s}, d[s]=0, d[v] =00 for v #s
Idea: Build up from 0-good to 1-good to 2-good, ...

When can we stop?

Bellman-Ford

Improving Bounds: The Relaxation Step

How to go from /-good to (¢ + 1)-good?

Recurrence Relation

For any vertex v, the shortest path using < ¢+ 1 edges either:
@ Uses < ¢ edges (already covered), or

@ Uses exactly £+ 1 edges: comes from some u via edge (u, v)
Therefore:

d“ (s, v) = min {d(é)(s, v), m_i}n{d(e)(s7 u) + c(u, v)}}

Implementation: Relax all edges
For each edge (u, v) € E:

d[v] < min{d[v], d[u] + c(u, v)}

[Key property: Relaxing all edges once improves from ¢-good to (¢ + 1)-good!]

Bellman-Ford

How Many Edges in a Shortest Path?

Key Observation

In a graph with n = |V/| vertices (without negative cycles):
Any shortest simple path has at most n — 1 edges.

Why?
© A simple path visits each vertex at most once
@ With n vertices, at most n — 1 edges connect them
© If a path has > n edges, it must revisit a vertex = contains a cycle

@ Without negative cycles, we can remove the cycle to get a shorter path

Conclusion: If d[v] is (n — 1)-good for all v, then d[v] = d(s, v) is optimal!

We just need to ensure our bounds are (n — 1)-good.

Bellman-Ford

Bellman-Ford: Visual Example

Example showing why we need n — 1 iterations:

Iterations (n = 5):

Y4 ‘ s i v W t

0|0 o0 o0 o o

1|10 10 oo o 2

210 10 20 oo 2

310 10 20 30 2

410 10 20 30 1
2 Note:

Two paths:

@ Blue: cost 2 (1 edge)
@ Black: cost 10 + 10 + 10 — 29 = 1 (4 edges)

@ After £ = 1: Find path with 1 edge (cost 2)
@ After ¢ = 2,3: Build longer path

@ After £ = 4: Discover optimal path (4 edges,
cost 1)!

= Only at iteration n — 1 do we guarantee
optimality!

Bellman-Ford

Bellman-Ford: Pseudocode & Runtime

1: function BELLMAN-FORD(G = (V, E,c),s € V)

2 d[s] < 0, d[v] - oo forall v #s

3

4 for (=1to |V|—1do > Build ¢-good bounds
5: for each edge (u,v) € E do

6 if d[u] + c(u,v) < d[v] then

7 d[v] < d[u] + ¢(u, v)

8

9 return d

Runtime Analysis:
@ Outer loop: |V| — 1 iterations

o Inner loop: |E| edge relaxations
e Total: O(|V|-|E]|)

Bellman-Ford

Handling Undirected Graphs

How do we handle undirected graphs?

Problem with negative edges:

Replace each undirected edge {u, v} with two 5

directed edges:
o (u,v) with cost c(u, v) @OG)
. -5
o (v, u) with cost c(v, u) = c(u,v)

This creates a negative cycle!

c
@<—\>_/@ @ u— v — u has cost =5+ (—5) = —10

c o Can traverse infinitely, cost — —oo

@ Shortest paths undefined!

Critical limitation: Bellman-Ford (and any shortest path algorithm) cannot be used on
undirected graphs with negative edge weights!

A single negative edge creates a negative cycle.

Bellman-Ford

Detecting Negative Cycles

Can we detect if a negative cycle exists?

Algorithm Extension

After running n — 1 iterations of Bellman-Ford:
@ Run one more iteration (the n-th iteration)
@ Check if any distance updates occur
© If yes = negative cycle exists

@ If no = no negative cycle reachable from s

Bellman-Ford

Your Turn: Proving Negative Cycles

The Claim: If an update occurs in iteration | V|, there must be a negative cycle.
Guided Proof (Fill in the logic):

@ Path Length: Bellman-Ford guarantees that after k iterations, we
know the shortest paths using at most k edges.

Therefore: After n iterations: Time: 5 Minutes

Discuss with your

@ Vertex Count: A path with n edges touches vertices. neighbor!
@ The Conflict: The graph only has n vertices. By the Pigeonhole S @
Principle, what must happen? @

Path with n edges?

© The Cost: If the cycle had positive weight, would this longer path
be shorter than the simple path?

Bellman-Ford

Bellman-For

Proof: Suppose we relax edge (u, v) in iteration n. This implies the shortest path to v now
uses n edges.

1. Pigeonhole Principle
@ A path with n edges visits n + 1 vertices.
@ The graph only has n unique vertices.
@ —> One vertex must appear twice.

2. Cycle
@ The path has the form: (s,...,w,...,w, V).
@ This forms a cycle C = (w,...,w). - Path visits
w twice!

3. Why is it negative?
o If cost(C) > 0, we could cut it out and get a shorter
path (found in earlier iterations).

@ Since we just found this path, cost(C) < 0, a
contradiction. O

Bellman-Ford

Minimum Spanning Trees

Minimum Spanning Trees

Definitions: Trees and Spanning Trees

1. What is a Tree?
A Tree is a graph that is: o e

o Connected (1 component)
@ Acyclic (No cycles) e

Recall: A tree with V' vertices always has exactly
V|~ 1 edges @® ©

2. What is a Spanning Tree?

Given a graph G = (V, E), a spanning tree
T = (V,E’) is a subgraph such that:

@ T contains all vertices of G ("Spanning”).

Red = Spanning Tree T

@ T is a valid Tree.

Minimum Spanning Trees

The Minimum Spanning Tree Problem

Problem Definition

Given: Undirected graph G = (V, E) with edge weight function ¢ : E — R
Find: A spanning tree T of minimum total weight:

w(T)=)cle)

ecT

Graph G MST: w =15

Minimum Spanning Trees

The Naive Approach: Brute Force?

Algorithm:
© Enumerate all spanning trees of graph G.
@ Compute the total weight for each tree.

© Return the tree with the minimum weight.

Input: Ks (Complete Graph) The Bottleneck: Cayley's Formula
/ For a complete graph K, the number of spanning trees
is:
T(n) = n""?
. (n)

We need a better way...

The search space is too large. We need a way to build
the tree step-by-step without looking back. — Greedy

One possible tree (red) Algorithms.

Minimum Spanning Trees

Greedy Algorithms: When Do They Work?

Recall: A greedy algorithm makes locally optimal choices, hoping they lead to a globally
optimal solution.

General Properties for Greedy Algorithms

1. Optimal Substructure
The optimal solution incorporates optimal solutions to subproblems.

2. Greedy Choice Property
A locally optimal choice leads to a globally optimal solution.

Examples that work: Examples that don’t:
o Dijkstra’s algorithm @ Knapsack problem
@ Minimum Spanning Trees! @ Longest path problem

Minimum Spanning Trees

Greedy Choice Property: The Cut Property

Key insight: We can always safely include certain edges in the MST.

Definition: Cut

A cut (S,V\ S) is a partition of vertices into two non-empty sets.
An edge (u, v) crosses the cut if u € S and v € V\ S (or vice versa).

V\S Cut Property

r Y) For any cut (S,V'\ S), let e be a
minimum-weight edge crossing the cut.
Cla Then e belongs to some MST of G.

Intuition:

@ Any spanning tree must cross the cut

@ Might as well use the cheapest crossing
Green edge: minimum-weight crossing edge edge!

Minimum Spanning Trees

Proof Strategy: The Exchange Argument

The Goal: Prove the Greedy Choice g is part of some optimal solution.

The Logic Flow: /" Solution OPT
@ Assume there exists an Optimal Solution (OPT)
that does not contain our greedy choice g. e Patte
s
@ Identify an element x in OPT that " conflicts” @
with g. Gree_dy 1
Choice :
© Swap them: Build a new solution OPT’. |
: Cut
OPT' = (OPT \ {x}) U {g} - [/
v

@ Compare Costs: Since g was the greedy choice, it
is "better” (or equal) to x:

Conclusion:
OPT' is valid and costs no more than
OPT. Thus, a solution with g is
optimal.

cost(g) < cost(x)

Therefore:

cost(OPT') < cost(OPT)

Minimum Spanning Trees

Proof: The Cut Property

Lemma (Cut Property)

For any cut (S, V'\ S), any minimum-weight edge e = {u, v} crossing the cut (with u € S,v ¢ S) is in

some MST.
Exchange Argument: s V\S

© Assume MST T does not contain e. e (Light)

. g
@ The Cycle: Adding e to T creates a cycle. , '
1
© The Crossing: This cycle must cross the cut at i %
least twice. \ /,'
e Once at e (by definition). ® e *

o Once at some other edge €’ (already in T).

@ The Swap: Since e is the lightest crossing edge:
w(e) < w(e')
© Conclusion: Create T' = (T \ {€'}) U {e}. Result: Since e is a min.-weight edge

w(T') = w(T) — w(e') + w(e) < w(T) crossing the cut, the tree can't have
gotten worse!

Thus, T’ is also optimal. O

Minimum Spanning Trees

Deriving Algorithms: The Manual Walkthrough

The Cut Property gives us a greedy choice. But how do we use it?

1. Prim’s Algorithm 2. Boruvka’s Algorithm
2 2
C C
6 6
F F
5 5

Minimum Spanning Trees

Minimum Spanning Trees

Prim's Algorithm: lterative Expansion

Formal Definition: Maintain a set S C V. At each step, select the edge (u, v) with minimum

weight such that u€ Sand v ¢ S.

Iteration kK =1 Iteration kK =2 Iteratlon k=3

- ©

® ©®» ©

S ={A} S={AE} S={AE,D}
Cut = {(A, B), (A, D), (A,E)} Cut = {(A, B), (A,D), (E,B)...} Cut = {(A,B), (E,F),(D,F)...}
min = w(A,E) =1 min = w(A,D) =3 min = w(A, B) =

Invariant Maintenance

Claim: At every step, the set of edges selected T is a subset of some MST.

Proof: The edge e = argmin(, ,)cc.ys)W(u, v) is a safe edge by the Cut Property and doesn’t add a
cycle. Adding it preserves the MST invariant.

Minimum Spanning Trees

Prim's Algorithm: Implementation Complexity

Key Insight: Prim'’s is essentially Dijkstra’s Algorithm, but measuring distance from the tree (S), not
the source (s).

c
1: function PrRIM(G, s)
2: // Init: O(V) Runtime (Binary Heap)
3: Q < PriorityQueue(V)
4: key[v] + oo,Vv; key[s] + 0 1. Vertex Operations:
5: .) @ We call ExtractMin once for
6: while Q # 0 do > Loop |V/| times R VRS
7: u <+ ExtractMin(Q)
8: for v € Adj[u] do > Loop |E| times total @ Cost: |V| x O(log|V])
9: if v Q and w(u,v) < key[v] then L
10- key[v] « w(u, v) 2. Edge Operations:
11: parent[v] < u @ We call DecreaseKey at most
12: DecreaseKey(Q, v) once for every edge.
13: end if @ Cost: |E| x O(log|V])
14: end for
15: Total Time:
16: return {(v, parent[v])}
17: end function=0 O((IV] + |E|) log [V])
\

Minimum Spanning Trees

Boruvka's Algorithm: The Parallel Approach

Why pick one edge at a time? Let’s pick one edge per component simultaneously!
The Phase Strategy:
@ Input: Start with n components (each
vertex is separate).
@ Scan: For every component C, find the
cheapest edge leaving C.

© Add: Add all these edges to the MST at
once.

Phase 1: Everyone picks closest neighbor
© Merge: Contract connected components.

© Repeat until only 1 component remains.

Why it guarantees progress: Every component adds at least one edge. The number
of components reduces by at least half (50%) in every phase!

Minimum Spanning Trees

Boruvka's Algorithm: Implementation Analysis

1: function BORUVKA(G = (V, E, c))
2T
3: C«+ {{v}|veV} > Init: |V/| components
4: 1. Inner Work (Per Phase): We
5 while |C| > 1 do > Phase Loop scan edges to find minimums and
6 // 1. Scan Edges (O(| V| + |E[)) merge components.
7 for each component C € C do
8: Find min-weight edge ec leaving C Oo(|VI| +|EJ)
9: end for
10: 2. Number of Phases: Every phase
11: // 2. Merge (O(|V| + |E|)) reduces the number of components
12: T + T U{all found ec} by at least half.
13: Merge components connected by T 1
14: Update C |Cnew‘ S §|Cold|
15: end while
16: return T Max phases: O(log(|V]))
17: end function

Total Runtime:

O((IVI + [E[) log(IV1))

Minimum Spanning Trees

Summary: Shortest Path Algorithms

Algorithm Input / Constraints Technique Runtime

BFS Unweighted Graph Traversal o(|V|+|E|)
DAG-SP Weighted, No Cycles Dynamic Prog. o(|V| +|E])

Dijkstra Weighted, Non-negative Greedy (P. Queue) O((|V|+ |E|)log|V|)
Bellman-Ford General Weights Dynamic Prog. o(|V|- |E]|)

Which one should | use?

e Default choice: Dijkstra (fastest for standard maps).
o If negative edges exist: Must use Bellman-Ford (slower, but safe).
o If DAG: Exploit topological ordering and use DP!

e Bellman-Ford Bonus: Can detect negative cycles (returns False).

Minimum Spanning Trees

Summary: Minimum Spanning Trees (MST)

Core Principle: All MST algorithms use the Cut Property (Greedy). They only differ in
which cut they pick next.

Algorithm Growth Strategy Data Structure Runtime

Prim Serial: Grow 1 tree Priority Queue O((|V|+ |E]|)log|V])

(Vertex-centric)

Borivka Parallel: Grow all Adjacency Scan O((|V| + |E|) log|V])

components at once

Minimum Spanning Trees

Questions?

Minimum Spanning Trees

Additional Practice

Additional Practice

Exercise: Trip Planning in New York City

You are organizing a day trip to New York City with your friends to see the sights. However, your
friends are quite particular about when they want to visit each attraction. The trip must follow these

constraints:

@ The day is divided into three time slots:
e Morning: 9:00-12:00
o Noon: 12:00-15:00
o Evening: 15:00-18:00
@ Each sight has specific opening hours given by a function t: V — {1,...,24} x {1,...,24} that
returns (topen, teiose) for each sight. Sights are open in contiguous blocks of multiples of 3 hours
(e.g., a sight might be open 9-12, or 9-15, or 12-18, but not 10-13).
@ You must change sights, one during each time slot, based on when your friends want to see them
and when the sights are open.
@ Travel time between any two sights u and v is given by ¢ : V x V — N (in minutes).
@ You start and end at your hotel H. You can assume all sights are reachable within their time
slots, and that you spend enough time at each sight to fill its entire time slot.

Task: Design an algorithm to find the route that minimizes total travel time. Your algorithm should
run in O((n + m) log n) time, where n is the number of sights and m < n? is the number of edges in

your graph.

Additional Practice

Solution: The Layered Graph Strategy

Idea: Transform " Time Constraints” into "Structural Layers” (time-expanded graph)

Morning Noon Evening

2

O OO0

Transitions cost c(u, v) Only if u # v and open!

Construction:
o Create 3 copies of every sight (one per time slot).
@ Include a sight in a layer only if it is open during that time.
o Edges flow strictly forward: Start — Morn — Noon — Eve — End.

Additional Practice

Solution: Step 1 - Constructing Vertices

Key Idea: A " Time-Expanded Graph” where time flows from left to right.

1. Vertex Construction Logic
We create a copy of sight v for time slot t, denoted (t, v), if and only if sight v is open
during interval /;.

V' = {hstart, Pend } U U {(t,v) | Open(v, t)},

t=1,2,3

where we define the helper predicate: Open(v, t) for intervals
h =19,12], , = [12,15], 3 = [15, 18] as true if sight v's hours cover I;:

Open(v,t) < tare(v) < min(l) A tena(v) > max(l;)

,,,,,,,,,,,,,,,,,,

Total Vertices: |V'| <3n+2 € O(n)

Additional Practice

Solution: Step 2 - Constructing Edges

The edges enforce the order and constraints. E/ = E; U E; U Eg3.
1. Start to Morning (£1):

Er = {(hstare, (1, v)) | (1,v) € V'}
Connect Hotel to all valid Morning sights. Weight: c(H, v).

2. Between Time Slots (E;):

E={((tu),(t+Lv))|tc{l,2} Au#vA(tu),(t+1,v)ecV'}

@ Connects layer t to t + 1.
@ Constraint: u # v ensures we visit different sights.
@ Weight: c(u, v).

3. Evening to End (E3):
Es = {((3,v), hend) | (3,v) € V'}
Connect all valid Evening sights back to Hotel. Weight: c(v, H).

Additional Practice

Solution: Step 3 - Algorithm Analysis

Cost function: We define the edge weights in G’ as
c(H,v), if v = hgare, v/ = (1, V)

' E =N, c(,v)=1<c(uv), ifv=(u),v=0+1v), i€{l,2}
c(u, H), if v/ =(3,u),v' = hepa

Algorithm: Run Dijkstra’s Algorithm on G’ starting from At

Correctness (sketch): Runtime:
@ Any path (hstart, - - - , flend) satisfies: @ Vertices: |V'| < O(n)
(H’(Lvl)v(z’ V2)v(37 V3)7H) © Edges:
@ The edges in E; guarantee vi # v, and
vo # v3 and only open sights are reachable |E"| < \”ﬂﬂrgffﬂr\”/, = O(n?)
by construction of V. E E E

@ Dijkstra finds shortest such path So m' < O(?)
(Pstarts ---» hend) satisfying the given = :
constraints. © Dijkstra:

O((n" + m')log n") < O((n+ m)log n)

Additional Practice

Solution: Alternative Approach

Can we do better? Yes!

Observation: The Graph is a DAG

Since edges only go forward in time (from layer i to layer i + 1), the graph is a directed
acyclic graph.

Alternative algorithm: DAG shortest path with topological sort

@ Topological order: hgt, all layer 1 vertices, all layer 2 vertices, all layer 3 vertices, heng
@ Process vertices in topological order, relaxing all outgoing edges
© Return distance to heng

Runtime: O(|V'| + |E|) = O(n + n?) = O(n?)
Even faster than Dijkstral But both satisfy the O((n+ m) log n) requirement.

Check if your graph has special structure (like being a DAG) that enables more efficient algo-
rithms!

Additional Practice

	Mini-Quiz
	Assignment
	Recap: Dijkstra
	Bellman-Ford
	Minimum Spanning Trees
	Additional Practice

