
Week 11: Bellman-Ford & MSTs

Algorithms & Data Structures

Thorben Klabunde

th-kl.ch

December 1, 2025

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

www.th-kl.ch

Agenda

1 Mini-Quiz

2 Assignment

3 Recap: Dijkstra

4 Bellman-Ford

5 Minimum Spanning Trees

6 Additional Practice

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Mini-Quiz

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Assignment

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Feedback Assignment 9

Common points:

Ex. 9.3:
a) Read carefully! Many proved that a general topological order exists but not the one
specified in the task.
b) Be very precise regading the specific property you want to show, here: the indices form
a strictly increasing sequence.
c) Don’t forget the justification (both for correctness and runtime)! And justification
means explaining why not just what or how. In the exam this will lead to deductions.

Ex. 9.4: Note that a closed walk →= cycle. If you want to apply the argument that there

can be no odd cycles by Thm. 1, we need to decompose the closed Eulerian walk into

a disjoint set of cycles (which is possible, as shown in the lecture). This is an important
step since Thm. 1 does not state anything regarding closed walks.

Remember to check the detailed feedback on Moodle! Reach out if you have any questions

regarding the corrections.

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

10.3

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Let V be the set of major Swiss cities with IVl = 1 and let there be a directed edge
(iv) for ver if there exists a highway from to w

The corresponding graph problem is to determine if there exists a directed path from h to u

in a = [U
(
E)

.

10.3

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Let voeV be arbitrary and run DFS
, marking all visited notes

, hielding the set S
.

Now construct C = (V, El) which is obtained by reversing all edges of C

Again ,
run DFS from to and compute the set s' of visited vertices

.

K2. S = S' = r elverticesee strongly connected .

#
() Assume S= V = S' and let u

,
veV be erbiters end distinct

.
Notice that s'comprises hand v,

i. e
,
there exist dir. paths (Vo

,
. .

. n) and (Vo, . . . , v) . By def .
of C'

, there then exist dir
. paths (4

, . . . , ro) end (r
, . . . , vo) in G

Analogously , we find that since S = U , we reaches a and v
. By transitivity ,

a must reach v and nice versa
.

Sinceu,u arearbitrary ,
the result follows

.

() (Clear .)

10.5

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

10.5

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Recap: Dijkstra

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Dijkstra’s Algorithm: Quick Review

Last week: Dijkstra’s algorithm for weighted graphs with non-negative edge costs

The Idea:

Maintain set S of finalized vertices

Greedily select closest unprocessed vertex

Add to S and relax outgoing edges

Use priority queue (min-heap) for e!ciency

Key Invariant:

When v→
is extracted from heap:

d [v→
] = d(s, v→

)

(distance is final)

Runtime:

O((|V |+ |E |) · log |V |)

Why it works:

Non-negative costs ensure: any path

leaving S only gets more expensive

=↑ Closest vertex in heap has final

distance

=↑ Greedy choice is safe!

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Dijkstra’s Algorithm: Implementation (Java Style)

1: function Dijkstra(G , s)
2: dist[·] → ↑; dist[s] → 0
3: PQ.add(new Node(s, 0))
4:
5: while PQ is not empty do
6: (u, d) → PQ.poll()
7:
8: // 1. Check for stale entry
9: if d > dist[u] then

10: continue
11: end if
12:
13: // 2. Relax Edges
14: for edge (u, v) with weight w do
15: if dist[u] + w < dist[v] then
16: dist[v] → dist[u] + w

17: PQ.add(new Node(v , dist[v]))
18: end if
19: end for
20: end while
21: end function

The ”Lazy” Logic

Why duplicates? If we find a shorter
path to v , we add a new pair
(v , dnew) to the PQ.
The old pair (v , dold) remains in the
PQ but sinks to the bottom.

The ”Stale” Check (Line 7): When
we eventually pop (v , dold), we see
that:

dold > dist[v]

So we ignore it.

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Bellman-Ford

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

The Challenge: How to Handle Negative Edges?

Key observation about Dijkstra:

Dijkstra’s Strong Guarantee

When vertex v is extracted from heap, we know d [v] = d(s, v) is final.

We never need to reconsider v again!

With negative edges, we can’t make this strong guarantee.

Weaker Guarantee: ω-good bounds

Instead of finalizing vertices one-by-one, we’ll track:

”For which path lengths have we found optimal distances?”

After ω iterations: d [v] is correct for all paths with ↓ ω edges.

New strategy: Incrementally increase path length guarantees until we’ve covered all

possible paths.

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Understanding ω-Good Bounds

Definition: ω-good bound

For ω ↔ N0, define:

S↑ω := {v ↔ V | ↗ path from s to v with ↓ ω edges}

A distance estimate d [v] is ω-good if:

d [v] =

{
d(s, v) if v ↔ S↑ω

↘ d(s, v) otherwise

i.e., d [v] is exact for paths using → ω edges, and an upper bound otherwise

Base case (ω = 0): S↑0 = {s}, d [s] = 0, d [v] = ≃ for v →= s

Idea: Build up from 0-good to 1-good to 2-good, ...

When can we stop?

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Improving Bounds: The Relaxation Step

How to go from ω-good to (ω+ 1)-good?

Recurrence Relation

For any vertex v , the shortest path using ↓ ω+ 1 edges either:

1 Uses ↓ ω edges (already covered), or

2 Uses exactly ω+ 1 edges: comes from some u via edge (u, v)

Therefore:

d (ω+1)
(s, v) = min

{
d (ω)

(s, v),min
u↓v

{d (ω)
(s, u) + c(u, v)}

}

Implementation: Relax all edges
For each edge (u, v) ↔ E :

d [v] ⇐ min{d [v], d [u] + c(u, v)}

Key property: Relaxing all edges once improves from ω-good to (ω+ 1)-good!

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

How Many Edges in a Shortest Path?

Key Observation

In a graph with n = |V | vertices (without negative cycles):

Any shortest simple path has at most n ⇒ 1 edges.

Why?
1 A simple path visits each vertex at most once

2 With n vertices, at most n ⇒ 1 edges connect them

3 If a path has ↘ n edges, it must revisit a vertex =↑ contains a cycle

4 Without negative cycles, we can remove the cycle to get a shorter path

Conclusion: If d [v] is (n ⇒ 1)-good for all v , then d [v] = d(s, v) is optimal!

We just need to ensure our bounds are (n ⇒ 1)-good.

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Bellman-Ford: Visual Example

Example showing why we need n ⇒ 1 iterations:

s

v1 v2 v3

t

2

10

10 10

⇒29

Two paths:

Blue: cost 2 (1 edge)

Black: cost 10 + 10 + 10↑ 29 = 1 (4 edges)

Iterations (n = 5):

ω s v1 v2 v3 t

0 0 ↓ ↓ ↓ ↓
1 0 10 ↓ ↓ 2
2 0 10 20 ↓ 2
3 0 10 20 30 2
4 0 10 20 30 1

Note:

After ω = 1: Find path with 1 edge (cost 2)

After ω = 2, 3: Build longer path

After ω = 4: Discover optimal path (4 edges,
cost 1)!

=↔ Only at iteration n ↑ 1 do we guarantee
optimality!

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Bellman-Ford: Pseudocode & Runtime

1: function Bellman-Ford(G = (V ,E , c), s ↔ V)

2: d [s] ⇐ 0, d [v] ⇐ ≃ for all v →= s
3:

4: for ω = 1 to |V |⇒ 1 do ε Build ω-good bounds

5: for each edge (u, v) ↔ E do
6: if d [u] + c(u, v) < d [v] then
7: d [v] ⇐ d [u] + c(u, v)
8:

9: return d

Runtime Analysis:

Outer loop: |V |⇒ 1 iterations

Inner loop: |E | edge relaxations

Total: O(|V | · |E |)

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Handling Undirected Graphs

How do we handle undirected graphs?

Replace each undirected edge {u, v} with two
directed edges:

(u, v) with cost c(u, v)

(v , u) with cost c(v , u) = c(u, v)

u v
c u v

c

c

Problem with negative edges:

u v
⇒5

⇒5

This creates a negative cycle!

u ⇑ v ⇑ u has cost ⇒5 + (⇒5) = ⇒10

Can traverse infinitely, cost ⇑ ⇒≃
Shortest paths undefined!

Critical limitation: Bellman-Ford (and any shortest path algorithm) cannot be used on

undirected graphs with negative edge weights!

A single negative edge creates a negative cycle.

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Detecting Negative Cycles

Can we detect if a negative cycle exists?

Algorithm Extension

After running n ⇒ 1 iterations of Bellman-Ford:

1 Run one more iteration (the n-th iteration)

2 Check if any distance updates occur

3 If yes =↑ negative cycle exists

4 If no =↑ no negative cycle reachable from s

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Your Turn: Proving Negative Cycles

The Claim: If an update occurs in iteration |V |, there must be a negative cycle.

Guided Proof (Fill in the logic):

1 Path Length: Bellman-Ford guarantees that after k iterations, we
know the shortest paths using at most k edges.
Therefore: After n iterations:

2 Vertex Count: A path with n edges touches vertices.

3 The Conflict: The graph only has n vertices. By the Pigeonhole
Principle, what must happen?

4 The Cost: If the cycle had positive weight, would this longer path
be shorter than the simple path?

Time: 5 Minutes

Discuss with your
neighbor!

s v

Path with n edges?

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Solution

Proof: Suppose we relax edge (u, v) in iteration n. This implies the shortest path to v now

uses n edges.

1. Pigeonhole Principle

A path with n edges visits n + 1 vertices.

The graph only has n unique vertices.

=↑ One vertex must appear twice.

2. Cycle

The path has the form: (s, . . . ,w, . . . ,w, v).

This forms a cycle C = (w , . . . ,w).

3. Why is it negative?

If cost(C) ↘ 0, we could cut it out and get a shorter

path (found in earlier iterations).

Since we just found this path, cost(C) < 0, a

contradiction.

s

w

v

Cycle C

Path visits
w twice!

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Minimum Spanning Trees

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Definitions: Trees and Spanning Trees

1. What is a Tree?

A Tree is a graph that is:

Connected (1 component)

Acyclic (No cycles)

Recall: A tree with V vertices always has exactly

|V |⇒ 1 edges.

2. What is a Spanning Tree?

Given a graph G = (V ,E), a spanning tree
T = (V ,E ↔

) is a subgraph such that:

T contains all vertices of G (”Spanning”).

T is a valid Tree.

A B

CD

E

Gray = Graph G

Red = Spanning Tree T

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

The Minimum Spanning Tree Problem

Problem Definition

Given: Undirected graph G = (V ,E) with edge weight function c : E ⇑ R
Find: A spanning tree T of minimum total weight:

w(T) =

∑

e↗T

c(e)

A

B

C

D

10

5

3

20

7

Graph G

A

B

C

D

5

3

7

MST: w = 15

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

The Naive Approach: Brute Force?

Algorithm:
1 Enumerate all spanning trees of graph G .

2 Compute the total weight for each tree.

3 Return the tree with the minimum weight.

Input: K5 (Complete Graph)

One possible tree (red)

The Bottleneck: Cayley’s Formula

For a complete graph Kn, the number of spanning trees
is:

T (n) = nn→2

We need a better way...

The search space is too large. We need a way to build
the tree step-by-step without looking back. ↗ Greedy
Algorithms.

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Greedy Algorithms: When Do They Work?

Recall: A greedy algorithm makes locally optimal choices, hoping they lead to a globally

optimal solution.

General Properties for Greedy Algorithms

1. Optimal Substructure
The optimal solution incorporates optimal solutions to subproblems.

2. Greedy Choice Property
A locally optimal choice leads to a globally optimal solution.

Examples that work:

Dijkstra’s algorithm

Minimum Spanning Trees!

Examples that don’t:

Knapsack problem

Longest path problem

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Greedy Choice Property: The Cut Property

Key insight: We can always safely include certain edges in the MST.

Definition: Cut

A cut (S ,V \ S) is a partition of vertices into two non-empty sets.

An edge (u, v) crosses the cut if u ↔ S and v ↔ V \ S (or vice versa).

S V \ S

A

B

C

D
2

3

7
4

Green edge: minimum-weight crossing edge

Cut Property

For any cut (S ,V \ S), let e be a

minimum-weight edge crossing the cut.

Then e belongs to some MST of G .

Intuition:

Any spanning tree must cross the cut

Might as well use the cheapest crossing

edge!

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Proof Strategy: The Exchange Argument

The Goal: Prove the Greedy Choice g is part of some optimal solution.

The Logic Flow:

1 Assume there exists an Optimal Solution (OPT)
that does not contain our greedy choice g .

2 Identify an element x in OPT that ”conflicts”
with g .

3 Swap them: Build a new solution OPT ↑.

OPT ↑ = (OPT \ {x}) ↘ {g}

4 Compare Costs: Since g was the greedy choice, it
is ”better” (or equal) to x :

cost(g) → cost(x)

Therefore:

cost(OPT ↑) → cost(OPT)

Solution OPT

xg

Greedy
Choice

Cut

Paste

Conclusion:
OPT ↑ is valid and costs no more than

OPT . Thus, a solution with g is
optimal.

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Proof: The Cut Property

Lemma (Cut Property)

For any cut (S ,V \ S), any minimum-weight edge e = {u, v} crossing the cut (with u → S , v /→ S) is in
some MST.

Exchange Argument:

1 Assume MST T does not contain e.

2 The Cycle: Adding e to T creates a cycle.

3 The Crossing: This cycle must cross the cut at
least twice.

Once at e (by definition).
Once at some other edge e→ (already in T).

4 The Swap: Since e is the lightest crossing edge:
w(e) ↑ w(e→)

5 Conclusion: Create T → = (T \ {e→}) ↓ {e}.
w(T →) = w(T)↔ w(e→) + w(e) ↑ w(T)

Thus, T → is also optimal.

S V \ S

e→

e (Light)

Result: Since e is a min.-weight edge
crossing the cut, the tree can’t have

gotten worse!

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Deriving Algorithms: The Manual Walkthrough

The Cut Property gives us a greedy choice. But how do we use it?

1. Prim’s Algorithm

A B C

D E F

4 2

6

57

3
81

2. Boruvka’s Algorithm

A B C

D E F

4 2

6

57

3
81

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Prim’s Algorithm: Iterative Expansion

Formal Definition: Maintain a set S ⇓ V . At each step, select the edge (u, v) with minimum

weight such that u ↔ S and v /↔ S .

Iteration k = 1

A B C

D E F

4

3 1

S = {A}
Cut = {(A,B), (A,D), (A, E)}
min = w(A, E) = 1

Iteration k = 2

A B C

D E F

4

7 5

83

S = {A, E}
Cut = {(A,B), (A,D), (E ,B) . . . }
min = w(A,D) = 3

Iteration k = 3

A B C

D E F

4

8

5

S = {A, E ,D}
Cut = {(A,B), (E , F), (D, F) . . . }
min = w(A,B) = 4

Invariant Maintenance

Claim: At every step, the set of edges selected T is a subset of some MST.

Proof: The edge e = argmin(u,v)↓Cut(S)w(u, v) is a safe edge by the Cut Property and doesn’t add a
cycle. Adding it preserves the MST invariant.

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Prim’s Algorithm: Implementation Complexity

Key Insight: Prim’s is essentially Dijkstra’s Algorithm, but measuring distance from the tree (S), not
the source (s).

c
1: function Prim(G , s)
2: // Init: O(V)
3: Q → PriorityQueue(V)
4: key[v] → ↑, ↓v ; key[s] → 0
5:
6: while Q ↔= ↗ do ω Loop |V | times
7: u → ExtractMin(Q)
8: for v ↘ Adj[u] do ω Loop |E | times total
9: if v ↘ Q and w(u, v) < key[v] then

10: key[v] → w(u, v)
11: parent[v] → u

12: DecreaseKey(Q, v)
13: end if
14: end for
15:
16: return {(v , parent[v])}
17: end function=0

Runtime (Binary Heap)

1. Vertex Operations:

We call ExtractMin once for
every vertex.

Cost: |V |≃ O(log |V |)

2. Edge Operations:

We call DecreaseKey at most
once for every edge.

Cost: |E |≃ O(log |V |)

Total Time:

O((|V |+ |E |) log |V |)

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Boruvka’s Algorithm: The Parallel Approach

Why pick one edge at a time? Let’s pick one edge per component simultaneously!

The Phase Strategy:
1 Input: Start with n components (each

vertex is separate).

2 Scan: For every component C , find the

cheapest edge leaving C .

3 Add: Add all these edges to the MST at

once.

4 Merge: Contract connected components.

5 Repeat until only 1 component remains.

A B

C

D5

6

4

11

2 3

Phase 1: Everyone picks closest neighbor

Why it guarantees progress: Every component adds at least one edge. The number

of components reduces by at least half (50%) in every phase!

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Boruvka’s Algorithm: Implementation Analysis

1: function Bor̊uvka(G = (V ,E , c))
2: T → ↗
3: C → {{v} | v ↘ V } ω Init: |V | components
4:
5: while |C| > 1 do ω Phase Loop
6: // 1. Scan Edges (O(|V |+ |E |))
7: for each component C ↘ C do
8: Find min-weight edge eC leaving C

9: end for
10:
11: // 2. Merge (O(|V |+ |E |))
12: T → T ⇐ {all found eC}
13: Merge components connected by T

14: Update C
15: end while
16: return T

17: end function

Complexity Logic

1. Inner Work (Per Phase): We
scan edges to find minimums and
merge components.

O(|V |+ |E |)

2. Number of Phases: Every phase
reduces the number of components
by at least half.

|Cnew | ⇒
1

2
|Cold |

Max phases: O(log(|V |))

Total Runtime:

O((|V |+ |E |) log(|V |))

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Summary: Shortest Path Algorithms

Algorithm Input / Constraints Technique Runtime

BFS Unweighted Graph Traversal O(|V |+ |E |)

DAG-SP Weighted, No Cycles Dynamic Prog. O(|V |+ |E |)

Dijkstra Weighted, Non-negative Greedy (P. Queue) O((|V |+ |E |) log |V |)

Bellman-Ford General Weights Dynamic Prog. O(|V | · |E |)

Which one should I use?

Default choice: Dijkstra (fastest for standard maps).

If negative edges exist: Must use Bellman-Ford (slower, but safe).

If DAG: Exploit topological ordering and use DP!

Bellman-Ford Bonus: Can detect negative cycles (returns False).

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Summary: Minimum Spanning Trees (MST)

Core Principle: All MST algorithms use the Cut Property (Greedy). They only di”er in

which cut they pick next.

Algorithm Growth Strategy Data Structure Runtime

Prim Serial: Grow 1 tree Priority Queue O((|V |+ |E |) log |V |)
(Vertex-centric)

Bor̊uvka Parallel: Grow all Adjacency Scan O((|V |+ |E |) log |V |)
components at once

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Questions?

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Additional Practice

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Exercise: Trip Planning in New York City

You are organizing a day trip to New York City with your friends to see the sights. However, your
friends are quite particular about when they want to visit each attraction. The trip must follow these
constraints:

The day is divided into three time slots:
Morning: 9:00–12:00
Noon: 12:00–15:00
Evening: 15:00–18:00

Each sight has specific opening hours given by a function t : V ↗ {1, . . . , 24}≃ {1, . . . , 24} that
returns (topen, tclose) for each sight. Sights are open in contiguous blocks of multiples of 3 hours
(e.g., a sight might be open 9–12, or 9–15, or 12–18, but not 10–13).

You must change sights, one during each time slot, based on when your friends want to see them
and when the sights are open.

Travel time between any two sights u and v is given by c : V ≃ V ↗ N (in minutes).

You start and end at your hotel H. You can assume all sights are reachable within their time
slots, and that you spend enough time at each sight to fill its entire time slot.

Task: Design an algorithm to find the route that minimizes total travel time. Your algorithm should
run in O((n +m) log n) time, where n is the number of sights and m → n2 is the number of edges in
your graph.

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Solution: The Layered Graph Strategy

Idea: Transform ”Time Constraints” into ”Structural Layers” (time-expanded graph)

Hstart

Morning

.

.

.

Noon

.

.

.

Evening

.

.

.
Hend

Transitions cost c(u, v) Only if u →= v and open!

Construction:

Create 3 copies of every sight (one per time slot).

Include a sight in a layer only if it is open during that time.

Edges flow strictly forward: Start → Morn → Noon → Eve → End.

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Solution: Step 1 - Constructing Vertices

Key Idea: A ”Time-Expanded Graph” where time flows from left to right.

1. Vertex Construction Logic

We create a copy of sight v for time slot t, denoted (t, v), if and only if sight v is open

during interval It .

V →
= {hstart, hend} ↑

⋃

t=1,2,3

{(t, v) | Open(v , t)},

where we define the helper predicate: Open(v , t) for intervals
I1 = [9, 12], I2 = [12, 15], I3 = [15, 18] as true if sight v ’s hours cover It :

Open(v , t) ↓↔ tstart(v) ↗ min(It) ↘ tend(v) ≃ max(It)

hs
Morning

9:00-12:00

Noon

12:00-15:00

Evening

15:00-18:00
he

Total Vertices: |V →| ↑ 3n + 2 ↓ O(n)

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Solution: Step 2 - Constructing Edges

The edges enforce the order and constraints. E →
= E1 ↑ E2 ↑ E3.

1. Start to Morning (E1):

E1 = {(hstart, (1, v)) | (1, v) ⇐ V →}

Connect Hotel to all valid Morning sights. Weight: c(H, v).

2. Between Time Slots (E2):

E2 = {((t, u), (t + 1, v)) | t ↓ {1, 2} ↔ u →= v ↔ (t, u), (t + 1, v) ↓ V →}

Connects layer t to t + 1.

Constraint: u →= v ensures we visit di!erent sights.

Weight: c(u, v).

3. Evening to End (E3):
E3 = {((3, v), hend) | (3, v) ↓ V →}

Connect all valid Evening sights back to Hotel. Weight: c(v ,H).

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Solution: Step 3 - Algorithm Analysis

Cost function: We define the edge weights in G →
as

c → : E → → N, c(u→, v →
) =






c(H, v), if u→ = hstart , v →
= (1, v)

c(u, v), if u→ = (i , u), v →
= (i + 1, v), i ↑ {1, 2}

c(u,H), if u→ = (3, u), v →
= hend

Algorithm: Run Dijkstra’s Algorithm on G →
starting from hstart.

Correctness (sketch):

Any path (hstart, . . . , hend) satisfies:
(H, (1, v1), (2, v2), (3, v3),H)

The edges in E2 guarantee v1 ↓= v2 and

v2 ↓= v3 and only open sights are reachable

by construction of V →
.

Dijkstra finds shortest such path

(hstart , ..., hend) satisfying the given

constraints.

Runtime:
1 Vertices: |V →| ↔ O(n)
2 Edges:

|E →| ↔ n︸︷︷︸
E1

+ 2n2︸︷︷︸
E2

+ n︸︷︷︸
E3

= O(n2)

So m→ ↔ O(n2).
3 Dijkstra:

O((n→ +m→
) log n→) ↔ O((n +m) log n)

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

Solution: Alternative Approach

Can we do better? Yes!

Observation: The Graph is a DAG

Since edges only go forward in time (from layer i to layer i + 1), the graph is a directed
acyclic graph.

Alternative algorithm: DAG shortest path with topological sort

1 Topological order: hstart, all layer 1 vertices, all layer 2 vertices, all layer 3 vertices, hend
2 Process vertices in topological order, relaxing all outgoing edges

3 Return distance to hend

Runtime: O(|V →|+ |E |) = O(n + n2) = O(n2)

Even faster than Dijkstra! But both satisfy the O((n +m) log n) requirement.

Check if your graph has special structure (like being a DAG) that enables more e!cient algo-
rithms!

Mini-Quiz Assignment Recap: Dijkstra Bellman-Ford Minimum Spanning Trees Additional Practice

	Mini-Quiz
	Assignment
	Recap: Dijkstra
	Bellman-Ford
	Minimum Spanning Trees
	Additional Practice

