
Week 12: Kruskal & Union-Find
Algorithms & Data Structures

Thorben Klabunde

th-kl.ch

December 8, 2025

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice

www.th-kl.ch


Agenda

1 Mini-Quiz

2 Assignment

3 Kruskal’s Algorithm

4 Union-Find

5 Additional Practice

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Mini-Quiz

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Q1



Q1



Q2



Q2



Q3



Q3



Q4



Q4



Q5



Q5



Q6



Q6



Q7



Q8



Q8



Q9



Q9



Q10



Q10



Assignment

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Feedback Assignment 10

Common points:

Ex. 10.1/2: Well done, just be careful with the order, definitions and read the tasks
carefully, making sure to answer every question.

Ex. 10.5: Runtime and a correctness justification are required! In the exam, you will get
deductions if you don’t cover them (even if they are obvious). For these exercises, it can
sometimes be easier to describe the algorithm in text to avoid mistakes in the pseudocode.

Remember to check the detailed feedback on Moodle! Reach out if you have any questions
regarding the corrections.

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Ex. 11.1

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Ex. 11.1

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice

- -

--. +「 ·
to) 「

} d t(l)
^

^ ^

ー
‰

↑

‰
…

:
㎡

¤

_ …→
C

∠ Δ

o ∞ Δ
… …

30 l

「 ^ 「

· ·

·



Ex. 11.2

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Ex. 11.2

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice

☆ -
m

☆
>a-

=) ⑬

⽻

☆

.
> ·

⽻ _
‰

⑦

R I a



Ex. 11.2

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice

lico3

.⑩0글로
⑳

Uo ,λ
□ =

⽻

( 7
.

0
%)

∅ =.
.iT⽻

③ 3 ⑧
O ")

☆∅
☆고 chocy

③ => f^
cowi7

B》
}

coili )



Ex. 11.4

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Ex. 11.4

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Kruskal’s Algorithm

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Recap: MST Algorithms So Far

What we’ve seen:
Prim’s Algorithm:

Grow a single tree from a starting vertex

Always add the cheapest edge leaving the
current tree

Uses: Priority Queue

Runtime: O((|V |+ |E |) log |V |)

Boruvka’s Algorithm:

Grow all components simultaneously

Each component adds its cheapest
outgoing edge

Uses: Component tracking

Runtime: O((|V |+ |E |) log |V |)

Di!erent approach: What if we process edges in a global order and only pick edges
that are safe?

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Kruskal’s Algorithm: The Idea

New Approach: Instead of growing trees, look at min-weight edges and ensure that no cycles
are introduced!

Kruskal’s Greedy Strategy

1 Sort all edges by weight (cheapest first)
2 Go through edges in order
3 For each edge (u, v):

If adding it doesn’t create a cycle → add it to MST
Otherwise → skip it

4 Stop when we have |V |→ 1 edges

Recall: Minimum Cut Property states
that any minimum weight edge that
crosses a cut must be in some MST.

S V \ S

A

B

C

D2

3
7 4

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Kruskal: Manual Walkthrough

Min-Cut Property gives us a greedy choice. How does Kruskal use it to select the
edges?

A B C

D E F

4 2

6

57

3
81

Sorted Edges:

Edge Weight
{A, E} 1
{B, C} 2
{D, A} 3
{A, B} 4
{E, F} 5
{C, F} 6
{D, E} 7
{B, E} 8

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



The Challenge: Detecting Cycles E!ciently

Bottleneck: How do we check if adding an edge creates a cycle?

Naive Approach (BFS / DFS):

Traverse the graph starting from u.

Worst Case: Must explore the entire
connected component to find v (or prove it’s
unreachable).

Cost per edge: O(|V |)
Total Cost:

O(|E | · |V |)
Too Slow for dense graphs!

u v

New edge?

Need to search entire
component!

Notice: We don’t need full path information!
We only need to know if u and v are in the same connected component.

This can be answered as a Union-Find problem much more e!ciently!

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Union-Find

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Union-Find Data Structure

Goal: Maintain a partition of elements.

Required Operations

1 make(x): Create a new set containing only x

2 find(x): Return the representative of the set containing x

3 union(x , y): Merge the sets containing x and y

For Kruskal’s:

Each vertex starts in its own set

find(u) == find(v) =↑ same
component

If di”erent: union(u, v) to merge them

A B C

Initial: 3 separate sets

A B C

After union(A, B): 2 sets

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Array-Based Representation

Idea: Use an array rep[] where each element stores its component representative.

Structure:

Array rep[1..n]

rep[v] = representative of v ’s component

Elements with same rep are in same
component

Operations:

find(v): Return rep[v]

union(u, v): Change all reps matching
one to match the other

Example:

A B C D E

A B C D Erep[]:

Initially: each element is its own representative

A B C D E

A C C A Arep[]:

After union(A, D) and union(D, E)

Invariant: find(u) = find(v) ↓↑ u and v are in the same component

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Naive Union-Find: Operation Costs

Implementation Idea: Array rep[] where rep[v] stores component’s rep of v .

Individual Operation Complexities

find(v): Return rep[v] #(1)

union(u, v): Scan entire array, change all entries matching rep[u] to rep[v] #(n)

Why is union #(n)?

Must scan all n positions in the array

Check if rep[i] matches the old component rep

Update matching entries to new component rep

Cannot avoid scanning the entire array — we don’t know which entries need updating!

Bottleneck: Every union operation costs #(n) time =↑ #(n2) in total.

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Union: Improvement 1

Idea: Maintain a list of members for each component.

Additional Data Structure

members[r]: List of all vertices in the component with representative r

For example: If rep[A] = rep[B] = rep[C] = A, then:

members[A] = [A,B ,C ]

Invariant:

members[rep[u]] is a list of all nodes in the connected component of u

Runtime: O(|members[ru]|) = O(|component of u|)
No longer need to scan all n positions!

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Members List: Does This Solve Our Problem?

Question: Is O(|component of u|) per union good enough?

Answer: Not quite... Consider the worst case:

Worst-case sequence:

1 2 3 · · · n

Union 1

Union 2

Union 3

Build a chain: union(1,2), union(2,3), ...,
union(n → 1,n)

Cost Analysis:

i-th union call:
After i → 1 unions, we have a component of size i .
Union cost: O(i)

Total cost:

O(1 + 2 + 3 + · · ·+ (n → 1))

= O

(
n(n → 1)

2

)

= O(n2)

Problem: Still O(n2) total cost in the worst case...

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Improvement 2: Weighted Union

Why did the worst case happen?
We kept merging the larger component into the smaller one!

Size i 1

Merge i elements
into size 1? BAD!

Size i 1

Merge 1 element
into size i? GOOD!

Weighted Union Rule: Always merge the smaller component into the larger one.
This ensures each element is moved at most log n times!

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Weighted Union: Runtime

Observe: How many times can a single element’s representative change?

Update Chain:

Consider a specific element x .

x ’s representative is only updated if x ’s set is
the smaller one in a union.

Therefore, after the union, the new set size is
at least double the old size.

Component size: After k-th update: size ↔ 2k

Since max size is N:

2k ↗ n =↑ k ↗ log2 n

Visualized
x Size 1

Update 1: Merge with → 1

Size → 2

Update 2: Merge with → 2

Size → 4

Update 3: Merge with → 4

Size → 8

Conclusion: Total complexity is O(n log n) because each of the n elements is moved at
most log n times.

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Union: Implementation

1 void union(ArrayList<LinkedList> mems,
2 int[] rep, int u, int v) {
3

4 // 1. OPTIMIZATION: Ensure u is smaller

5 if (mems.get(u).size() > mems.get(v).size()) {
6 int swap = u; u = v; v = swap;
7 }
8

9 // 2. MERGE: Update smaller (u) into larger (v)

10 LinkedList<Integer> uList = mems.get(u);
11 LinkedList<Integer> vList = mems.get(v);
12

13 // Update representative for u itself

14 rep[u] = v;
15 vList.add(u);
16

17 // Update representatives for all members of u

18 for (Integer z : uList) {
19 rep[z] = v; // The "Work"

20 vList.add(z); // Move member

21 }
22 }

Note: Lines 6 and 18 guarantee we only touch the minority of
elements.

Complexity Analysis

1. Single Union Cost

Worst case: O(n)

(Happens if we merge two sets of
size n/2)

2. Aggregate Cost (Kruskal’s)

How many times does a specific
element’s rep change?

Every time it changes, its set size
doubles.

Max set size is n.

Therefore: ↑ log2 n updates per
element.

Total Time: O(n log n)

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Kruskal: Pseudocode

1: function Kruskal(G = (V ,E , c))
2: T ↓ ↔ ω MST edges
3:

4: // Sort edges by weight
5: Sort E by increasing weight: e1, e2, . . . , e|E |
6:

7: // Process edges in order
8: for each edge (u, v) ↗ E (in sorted order) do
9: if find(u) ↘= find(v) then

10: T ↓ T ≃ {(u, v)} ω Add to MST
11: union(u, v) ω Merge components
12: end if
13: if |T | = |V |→ 1 then
14: break ω MST complete
15: end if
16: end for
17: return T
18: end function

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Your Turn: Proving Kruskal’s Correctness

Claim: Let A be the set of edges selected by Kruskal’s. Then A ↘ T for some MST T .

Proof. Proceed by induction on |A| :
B.C.: |A| =

I.H.: Assume A ⇐ T after selecting edges.

Inductive Step: Let e = (u, v) be the next edge Kruskal adds and
let S be the set of vertices in u’s conn.-comp.

1 Cut: What can we say about e? Does v belong to S?

2 Minimality: We know Kruskal adds edges in
order. (Could there be an edge e→ crossing (S ,V \ S) with
w(e→) < w(e)?)

3 Conclusion: By the Cut Property:

Visualize the Step

S

Component of u

V \ S
e

u v

?
Any lighter edge?

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Kruskal: Correctness (1/2)

Kruskal’s Invariant

Let A be the set of edges selected by Kruskal’s algorithm. Then A is a subset of some
Minimum Spanning Tree (MST).

Proof Strategy: Induction on |A|.
B.C.: A = ≃ is trivially a subset of any MST.

I.H.: Assume A ↘ T with 0 ↗ |A| < n → 1 for some
MST T .

S

(Component of u)

V \ S

u v
e

No lighter edges
cross this cut

Lemma: If e is a minimum weight edge
crossing any cut (S ,V \ S), then e

belongs to some MST.

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Kruskal: Correctness (2/2)

I.S.: Let e = (u, v) be the next edge added and let S be
the set of vertices in the component containing u.

1 Since adding e does not create a cycle, v /⇐ S .
Thus, e crosses the cut (S ,V \ S).

2 Kruskal’s scans edges by increasing weight. Any
edge crossing (S ,V \ S) with weight w(e↑) < w(e)
would have been processed earlier.

3 Since u, v are currently disconnected, no such
lighter edge exists.

=↑ e is a Light Edge for cut (S ,V \ S)

4 A ⇒ {e} is also a subset of an MST.

S

(Component of u)

V \ S

u v
e

No lighter edges
cross this cut

Lemma: If e is a minimum weight edge
crossing any cut (S,V \ S), then e

belongs to some MST.

In particular, this proves A ↘ T with |A| = n → 1 for some MST T . And since T has n → 1
edges, A = T .

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Kruskal: Runtime

Kruskal’s Complexity

Sorting edges: O(m logm) = O(m log n)

Union-Find: O(m + n log n)

Total: O(m log n +m + n log n)

= O((m + n) log n)

Note: Since m ↗ n
2, we have logm ↗ 2 log n

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Summary: Complete MST Picture

Three Greedy Algorithms, One Principle: The Cut Property

Prim’s

S

min

Grow one tree
Add min edge
leaving tree

Kruskal’s

min

Sort all edges
Add min edge

not creating cycle

Boruvka’s

min

All components
add min edge
simultaneously

Key Takeaways:

All three algorithms are correct by the Cut Property

Runtime: O(|V |+ (|E |) log |V |) for all three
Kruskal’s requires Union-Find for e!ciency

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Additional Practice

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



HS20

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



HS20

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



HS20

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



HS20

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



HS20

i) Graph: We model the problem as a weighted undirected graph G = (V ,E , c), where:

the set of vertices V corresponds to the set of major Swiss cities

the set of edges is E = {{u, v} | u, v → V , u ↑= v}
the weight of an edge c(e), e = {u, v} → E , is given by the cost of construction of a
tunnel between cities u and v .

Problem Definition: The solution to the given problem corresponds to finding an MST in G .

ii) Runtime:

We can find an MST of G using Kruskal in O((|V |+ |E |) log(|V |)).

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



HS20

i) Algorithm:

Let ê = {Basel,Geneva} with new weight c →(ê) = c(ê)/2.
1 Case 1 (ê → T ): Return T

→ = T .

2 Case 2 (ê /→ T ):
Let P be the unique path between Basel and Geneva in T .

Find emax = argmaxe→P c(e).

Update:

If c ↑(ê) < c(emax): Return T ↑ = (T \ {emax}) → {ê}.

Else: Return T ↑ = T .

Runtime: Finding path P and emax takes O(|V |) using DFS on the tree T (since
|ET | = |V |↓ 1). All other operations are O(1). Total: O(|V |).

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



HS20: Correctness (1/2)

Case 1: ê → T

Since ê → T , reducing its weight decreases the total cost of T .

Any other spanning tree Tother either contains ê (cost decreases by same amount) or does
not (cost stays same).

Since T was optimal for c , it remains optimal for c → (c’ being the new weight function).

(see case 2 on next slide)

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



HS20: Correctness (2/2)

Case 2: ê /→ T

Removing emax partitions V into two sets, S and V \ S . Let Ecut be the set of edges
crossing (S ,V \ S) in the original graph.

Since T is an MST for c , emax is a minimum weight edge for this cut:

↑e → Ecut , c(emax) ↓ c(e)

For the new weights c →, only ê changes. Thus:

↑e → Ecut \ {ê}, c
→(emax) ↓ c

→(e)

The minimum weight edge for the cut in G is now min(emax , ê).

If c →(ê) < c
→(emax), ê is the unique minimum crossing edge and must be included (Cut

Property). Otherwise, emax remains minimal.

Finally, any other edge in T cannot be replaced with a cheaper edge, since if we suppose
to the contrary, then we could also improve the original tree given that no other edge
weights have changed.

Hence, T → is a valid MST.
Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice



Your Turn: MST ”Bottlenecks”

Define the bottleneck capacity of a path as the maximum weight of any edge on that path.

Claim: The path between any two nodes u, v in an MST minimizes the bottleneck capacity.
Guided Proof:

1 Let PMST be the path in the MST between u and v . Let emax be
the heaviest edge in PMST . Removing emax creates a Cut (Su, Sv )
because ...

What do we know about w(emax) compared to other edges
crossing this cut?

2 Assume for contradiction there is another path Palt in G whose
bottleneck is strictly less than w(emax). Then:

Time: 5-8 Minutes

Su Sv

u

v

emax

e↑

Does Palt have to cross the gap?

Mini-Quiz Assignment Kruskal’s Algorithm Union-Find Additional Practice


	Mini-Quiz
	Assignment
	Kruskal's Algorithm
	Union-Find
	Additional Practice

