Week 12: Kruskal & Union-Find

Algorithms & Data Structures

Thorben Klabunde
th-kl.ch

December 8, 2025

www.th-kl.ch

© Mini-Quiz

© Assignment

© Kruskal's Algorithm
@ Union-Find

© Additional Practice

Mini-Quiz

Let d be the array computed after n — 1 iterations of the Bellman-Ford algorithm (applied to a
directed graph G) and d’ the one computed after n iterations. If there exists a negative cycle in G,
then d'[v] < d[v] for every vertex v.

True

False

Q1

Let d be the array computed after n — 1 iterations of the Bellman-Ford algorithm (applied to a
directed graph G) and d’ the one computed after n iterations. If there exists a negative cycle in G,
then d'[v] < d[v] for every vertex v.

True

False @

The statement is true if we change the "for every vertex v" with "\(for at least one vertex v", as we
saw in the lecture.

The correct answer is ‘False'.

Q2

Recall that in each iteration, Boruvka's algorithm adds a set of edges to its current forest. In the
worst-case, Boruvka's algorithm needs a linear number of such iterations.

True

False

Q2

Recall that in each iteration, Boruvka's algorithm adds a set of edges to its current forest. In the
worst-case, Boruvka's algorithm needs a linear number of such iterations.

True

False ©

We saw in the lecture that only a logarithmic number of iterations are necessary in the worst case,
since the number of connected components halves in each round.

The correct answer is 'False’.

Q3

The notion of a minimum spanning tree can also be defined for a graph where there are possibly edges with negative weights (we still just sum
the weights and look for the minimum possible value).

True/False: Prim’s algorithm also computes a minimum spanning tree on graphs where some edges have negative weights.

True

False

Q3

The notion of a minimum spanning tree can also be defined for a graph where there are possibly edges with negative weights (we still just sum
the weights and look for the minimum possible value).
True/False: Prim's algorithm also computes a minimum spanning tree on graphs where some edges have negative weights.

®©True

O False

Negative weights are not an issue for computing MSTs in general, because no cycles form (this is where issues show up in other algorithms). To
see this even more clearly (i.e. assuming that Prim at least works for non-negative weights), assume we have a graph with some negative weights,
with e.g. -100 the smallest one. We can add 100 to the weight of each edge. Now, all weights are non-negative. Moreover, any tree has its total
weight increased by exactly 100(n — 1), since each spanning tree has n — 1 edges, so we do not change the set of MSTs.

Suppose we have stored a graph G = (V, E)) using adjacency lists. The runtimes of the algorithms
of Prim, Boruvka and Dijkstra are all at most O((|V| + | E|) log |V]).

True

False

Suppose we have stored a graph G = (V, E) using adjacency lists. The runtimes of the algorithms
of Prim, Boruvka and Dijkstra are all at most O((|V| + |E|) log [V]).

True ©

False

We saw this in the lecture.

The correct answer is ‘True'.

Let G = (V, E) be an undirected, weighted graph with positive weights. Assume that every path in
this graph uses at most h edges (i.e., the length with respect to the number of edges, not the
weights, is at most h). Given a source vertex v, we can compute single-source shortest paths (now
"shortest" with respect to the weights as usual) in time at most O(h|E]).

True

False

Let G = (V, E) be an undirected, weighted graph with positive weights. Assume that every path in
this graph uses at most h edges (i.e., the length with respect to the number of edges, not the
weights, is at most h). Given a source vertex v, we can compute single-source shortest paths (now
"shortest" with respect to the weights as usual) in time at most O(h|E|).

True ©

False

We can indeed modify the Bellman-Ford algorithm to only do h — 1 "bound improvement" steps,
which leads to the desired runtime. No more steps are required, since each path in the graph can

only be h-long in terms of number of edges used.

The correct answer is ‘True'.

Let G be a weighted undirected graph with distinct edge weights (ie there is no pair of edges with
the same weight). Let emax be the edge of maximum weight. Then, emax is not in any MST of G.

True

False

Let G be a weighted undirected graph with distinct edge weights (ie there is no pair of edges with
the same weight). Let emax be the edge of maximum weight. Then, emax is not in any MST of G.

True

False ©

A counterexample is a graph where the heaviest edge is attached to a vertex with degree 1. For this
vertex we definitely have to take this edge. What is true is that the heaviest edge that is part of a
cycle is never in an MST.

The correct answer is 'False’.

Q7

We see below a graph on which we have partially executed Kruskal's algorithm. The edges already
added by the algorithm are dashed and shown in red. What s the weight of the next edge added?

13

15

11

For the union-find data structure we saw in lecture, the worst-case runtime of a union step is at most

O(logn).

True

False

For the union-find data structure we saw in lecture, the worst-case runtime of a union step is at most
O(logn).

True

False ©

We saw in lecture that union steps with even linear cost may happen, it is just that on average they
take logarithmic time. So the statement is false.

The correct answer is 'False".

As we saw from the lecture, Kruskal's algorithm uses an array repr where each vertex stores its
representative. Recall that, initially, repr[i] = 1 for all 7, so there are n different values stored in the
array and in the end, only one value will be stored.

True or False: Suppose at some point Kruskal's algorithm has added = edges to the forest. Then, the
array repr contains exactly n — z distinct values.

True

False

As we saw from the lecture, Kruskal's algorithm uses an array repr where each vertex stores its
representative. Recall that, initially, repr[i] = i for all 7, so there are n different values stored in the
array and in the end, only one value will be stored.

True or False: Suppose at some point Kruskal's algorithm has added z edges to the forest. Then, the
array repr contains exactly n — x distinct values.

True ©

False

The number of different representatives is equal to the number of connected components at any
time. Whenever we add an edge between two different components (i.e. whenever Kruskal adds an
edge), the number of connected components drops by exactly 1. We start with n components, so the
statement is true.

The correct answer is ‘True'.

Consider the following array of representatives in the context of finding an MST of a graph with
vertices 0, 1,2, 3,4, 5 using a union-find data structure:

(1,1,1,3,3,5].

Now, suppose we unite the components of vertices 1 and 3, using the optimized union procedure
which leads to O(|V|log |V'|) runtime for the union steps in Kruskal's algorithm. What is the
resulting array?

(1,1,1,3,3,5]

3,3,3,3,3,5]

1,1,1,1,3,5]

(1,1,1,1,1,5]

Consider the following array of representatives in the context of finding an MST of a graph with
vertices 0, 1,2, 3,4, 5 using a union-find data structure:

1,1,1,3,3,5].

Now, suppose we unite the components of vertices 1 and 3, using the optimized union procedure
which leads to O(|V|log |V'|) runtime for the union steps in Kruskal's algorithm. What is the
resulting array?

a. [1,1,1,3,3,5]

b. [3,3,3,3,3,5]

¢ [1,1,1,1,3,5]

d [1,1,1,1,1,5] ©

Assignment

Feedback Assignment 10

Common points:

o Ex. 10.1/2: Well done, just be careful with the order, definitions and read the tasks
carefully, making sure to answer every question.

o Ex. 10.5: Runtime and a correctness justification are required! In the exam, you will get
deductions if you don't cover them (even if they are obvious). For these exercises, it can
sometimes be easier to describe the algorithm in text to avoid mistakes in the pseudocode.

Remember to check the detailed feedback on Moodle! Reach out if you have any questions
regarding the corrections.

Ex. 11.1

Exercise 11.1 Shortest paths with cheating (1 point).

Let G = (V, E) be a weighted, directed graph with weights ¢ : E — Rx(. We consider a variation of
the shortest path problem in G, where we are allowed to ‘cheat’ by setting a certain number of weights
to 0. Formally, for £ € N, we write C}, for the set of all weight functions v : £ — R on G with
v(€) # c(e) for at most k edges e € E.!

Given s,t € V, we wish to find a path P = (v = s,v2,. .., v = t) in G which minimizes:
-1
c(P) = iggl Y(P), where Y(P) := Y 7((vs; vit1))-
k i=1

We call such a path a ‘shortest path from s to ¢ with k cheats.

Ex. 11.1

(b) Describe an algorithm which finds the length of a shortest path from s to ¢ with k cheats in
time O((k|V[)?).

Address the following elements:

1) The graph that you use. This includes: its vertex set and edge set; whether edges are directed or
not; whether vertices or edges are weighted and if so, their weight.

L Solution:

Weset V' = {v® :v € V, £€{0,1,2,...,k}}, which has size [V’| = (k + 1) - [V|. We define
E'and ¢ : E' - Rs by:

V(w) €E 0<l<k: (0 w?) e withd((v9,w?)) = c((v,w)), (T1)

V(w eB 0<t<k—1: @ wlD)c E with ((v®,wtD)) =0, (T2)

Vo<e<k—1: (19,4¢) e B with /((¢9,4D)) = 0. (T3)

‘The first set of edges (T1) represents normal edge-traversal in G, the second set (T2) represents

cheating, and the final set (T3) ensures that there is always a path from s(?) to t(¥) in G if there
is a path from s to t in G.

Assignmen

Ex. 11.2

You are given a graph G = (V, E) representing the towns of Switzerland. Each vertex V corresponds
to a town, and there is an (undirected) edge {v1,v2} € E if and only if there exists a direct road going
from town v; to town vy. Additionally, there is a function w : E — N such that w(e) corresponds to
the number of hours needed to hike over road e, and a function £ : V' — {G, F, I, R} that maps each
town to the language that is spoken there?. For simplicity, we assume that only one language is spoken
in each town.

Alice asks you to find an algorithm that returns the walking duration (in hours) of the shortest hike
that goes through at least one town speaking each of the four languages.

For example, consider the following graph, where languages appear on vertices:

Assignment

Ex. 11.2

(a) Suppose we know the order of languages encountered in the shortest hike. It first goes from an
R vertex to an I vertex, then immediately to a G vertex, and reaches an F vertex in the end, af-
ter going through zero, one or more additional G vertices. In other terms, the form of the path
is RIGF or RIG...GF. In this case, describe an algorithm which finds the shortest path satisfying
the condition, and explain its runtime complexity. Your algorithm must have complexity at most

O((IV]+|E]) log |V']).
Address the following elements:

1) The graph that you use. This includes: its vertex set and edge set; whether edges are directed or
not; whether vertices or edges are weighted and if so, their weight.

E' = {{US, (v, 1)} | {u,v} € E,Z(’U) = R}

U {{(uv 1), (072)} | {’LL,’U} € E,((v) = I}

U{{(#,2), (v;3)} [{u, v} € E, £(v) = G}
U{{(%,3), (v;3)} [{u, v} € E, £(v) = G}
U {{(u7 3)7 (074)} | {’LL,’U} € E, l(’U) = F}
U{{(v,4),v4} |v eV}

ifu' = v; orv =y
w{u,0}) e = (u,4) and o = (v,)

(), v'}) = {0

Assignment

Ex. 11.2

(b) Now we don’t make the assumption in (a). Describe an algorithm which finds the shortest path
satisfying the condition. Briefly explain your approach and the resulting runtime complexity. Your
algorithm must have complexity at most O((|V| 4+ | E|) log |V']). Address the following elements:

1) The graph that you use. This includes: its vertex set and edge set; whether edges are directed or
not; whether vertices or edges are weighted and if so, their weight.

Consider the vertex set V' above, as well as the following edge set E’ and weight function w':

.
S
2 sgnD E' = {{vs, (v, ((¢(v) == G), (¢(v) == F), (¢(v) == D), (£(v) == R)))} | v € V'}
U{{(v,(1,1,1,1)),04} |v € V}
U {{(w, (g,f,i,r)),(v,@f,i,r))} | (9, f,i,m) € {0,1}*, {u,v} € B, £(v) = G}
U{{(u (9, £,4,7)), (v, (9, 1,5,7)} | (9, i) € 0,1}, {u,v} € B, £(v) = F}
U{{(u (9, £,4,7)), (v, (9, £, 1,7 D} | (9, £,7) € {0, 1}, {u, v} € B, b(v) =T}

[]
Clo)

S
(o)

o
(o10)

) U (s (9. £,6,m), (0, (9. £,6, D)} | (9, £1iv7) € (0,1, {u,0) € B, (v) = R}
T lean) . ,))_{0 ifu' = vy or v = vy
> YOI T \w(u,0)) it = (u, (0, £,6,) and o = (v, (g, £1i,7)
o)
i) L

’ [CHM)

Assignment

Ex. 11.4

Exercise 11.4 Driving from Zurich to Geneva (1 point).

Bob is currently in Zurich and wants to visit his friend that lives in Geneva. He wants to travel there
by car and wants to use only highways. His goal is to get to Geneva as cheap as possible. He has a
map of the cities in Europe and which ones are connected by highways (in both directions). For each
highway connecting two cities he knows how much fuel he will need for this part (depending on the

length, condition of the road, speed limit, etc.) and how much this will cost him. This cost might be
different depending on the direction in which he travels. Furthermore, for some connections between
two cities, he has the option to take a passenger with him that will pay him a certain amount of money.
Again this might be different depending on the direction he travels. We assume that this option is only
available to him between cities directly connected by a highway and that the passengers want to travel
the direct road and would not agree to making a detour. Also Bob has a small car, so he can only take
at most one passenger with him. It is possible that he gains more money from this than he has to pay
for the fuel between two given cities but we assume that he has no way to gain an infinite amount of
money, i.e. there is no round-trip from any city that earns him money.

Ex. 11.4

(a) Model the problem as a graph problem.
Address the following elements:

1) The graph that you use. This includes: its vertex set and edge set; whether edges are directed or
not; whether vertices or edges are weighted and if so, their weight.

Solution:

The graph G = (V, E, w) is defined as follows: V' is the set of cities on his map of Europe. There
are directed edges between the cities (in both directions) if they are connected by a highway.
The weight of any edge is the difference of the cost he needs to pay for the fuel for this highway
and the money that a passenger would pay him (if available, otherwise it is just the cost he needs
pay).

2) The algorithm that you apply to this graph. You can use the algorithms covered in the lecture
material as subroutines, and you can use their running time bounds without proof.

Solution:

‘We apply Bellman-Ford starting at vzyyich corresponding to Zurich since edge weights are pos-
sibly negative.

Kruskal's Algorithm

Kruskal’s Algorithm

Recap: MST Algorithms So Far

What we’ve seen:

Prim’s Algorithm: Boruvka’s Algorithm:
@ Grow a single tree from a starting vertex @ Grow all components simultaneously
@ Always add the cheapest edge leaving the @ Each component adds its cheapest
current tree outgoing edge
@ Uses: Priority Queue @ Uses: Component tracking
o Runtime: O((|V|+ |E])log|V|) e Runtime: O((|V| + |E|) log |V])

Different approach: What if we process edges in a global order and only pick edges
that are safe?

Kruskal’s Algorithm

Kruskal's Algorithm: The Idea

New Approach: Instead of growing trees, look at min-weight edges and ensure that no cycles
are introduced!

Kruskal's Greedy Strategy

@ Sort all edges by weight (cheapest first)

@ Go through edges in order

@ For each edge (u, v):
o If adding it doesn't create a cycle — add it to MST
o Otherwise — skip it

@ Stop when we have |V| — 1 edges

@ Recall: Minimum Cut Property states
that any minimum weight edge that
crosses a cut must be in some MST.

Kruskal’s Algorithm

Kruskal: Manual Walkthrough

Min-Cut Property gives us a greedy choice. How does Kruskal use it to select the
edges?

Sorted Edges:

2 Edge Weight
C AE | 1
{B, C} 2
6 {D, A} 3
{A, B} 4
{E, F} 5
F {C, F} 6
5 {D, E} 7
{B, E} 8

Kruskal’s Algorithm

The Challenge: Detecting Cycles Efficiently

Bottleneck: How do we check if adding an edge creates a cycle?
Naive Approach (BFS / DFS):

@ Traverse the graph starting from u. New edge?

- =
- ~

@ Worst Case: Must explore the entire ~
connected component to find v (or prove it's
unreachable).

o Cost per edge: O(|V])

o Total Cost:
O(IE[- V1) .
Need to search entire
Too Slow for dense graphs! component!

Notice: We don't need full path information!
We only need to know if u and v are in the same connected component.

This can be answered as a Union-Find problem much more efficiently!

Kruskal’s Algorithm

Union-Find

Union-Find Data Structure

Goal: Maintain a partition of elements.

Required Operations

@ make(x): Create a new set containing only x
@ find(x): Return the representative of the set containing x

@ union(x, y): Merge the sets containing x and y

For Kruskal’s:

@ Each vertex starts in its own set Initial: 3 separate sets

o find(u) == find(v) — same

component

o If different: union(u, v) to merge them
After union(A, B): 2 sets

Array-Based Representation

Idea: Use an array rep[] where each element stores its component representative.
Structure: Example:
@ Array rep[1l..n] A B C D E

@ rep[v] = representative of v's component rep[]: [D]

@ Elements with same rep are in same . . .
Initially: each element is its own representative

component
Operations: A B C D E
o find(v): Return repl[v] rep(l:
@ union(u, v): Change all reps matching
one to match the other After union(A, D) and union(D, E)
[Invariant: find(u) = find(v) <= u and v are in the same component]

Naive Union-Find: Operation Costs

Implementation Idea: Array rep[] where rep[v] stores component’s rep of v.

Individual Operation Complexities

e find(v): Return repl[v] O(1)
@ union(u, v): Scan entire array, change all entries matching rep[u] to rep[v] O(n)

Why is union ©(n)?

@ Must scan all n positions in the array

@ Check if rep[i] matches the old component rep
o Update matching entries to new component rep
"]

Cannot avoid scanning the entire array — we don't know which entries need updating!

Bottleneck: Every union operation costs ©(n) time = ©(n?) in total.

Union: Improvement 1

Idea: Maintain a list of members for each component.

Additional Data Structure

members|r]: List of all vertices in the component with representative r

For example: If rep[A] = rep[B] = rep[C] = A, then:

members [A] = [A, B, C]

Invariant:

members [rep[ul] is a list of all nodes in the connected component of u

Runtime: O(|members[r,]|) = O(Jcomponent of u|)
No longer need to scan all n positions!

Members List: Does This Solve Qur Problem?

Question: Is O(|component of u|) per union good enough?

Answer: Not quite... Consider the worst case:
Cost Analysis:

Worst-case sequence: i-th union call:
After i — 1 unions, we have a component of size /.
w @ @ Union cost: O(i)
grent Total cost:
Union 2 -
Union 3 O(1+2+3++(n—1))
Build a chain: union(1,2), union(2,3), ..., -0 n(n—1)
union(n — 1,n) 2
= 0(n?)
Problem: Still O(n?) total cost in the worst case...]

Improvement 2: Weighted Union

Why did the worst case happen?
We kept merging the larger component into the smaller one!

Merge i elements
into size 17 BAD!

t

Merge 1 elemen
into size i? GOOD!

Weighted Union Rule: Always merge the smaller component into the larger one.
This ensures each element is moved at most log n times!

Union-Find

Weighted Union: Runtime

Observe: How many times can a single element's representative change?

Update Chain: Visualized
. i ® Sizel
o Consider a specific element x.
+ Update 1: Merge with > 1
@ x's representative is only updated if x's set is [Z B ...
. . 1 ize >
the smaller one in a union. 7
. .) + Update 2: Merge with > 2
@ Therefore, after the union, the new set size is 7 S
. Size > 4
at least double the old size. R] e =

+ Update 3: Merge with > 4

Component size: After k-th update: size > 2k [° Sire > 8

Since max size is N:

k< p = k <log,n

Conclusion: Total complexity is O(nlog n) because each of the n elements is moved at
most log n times.

Union: Implementation

void union(ArrayList<LinkedList> mems,

}

Note: Lines 6 and 18 guarantee we only touch the minority of

int[] rep, int u, int v) {

// 1. OPTIMIZATION: Ensure u 1S smaller
if (mems.get(u).size() > mems.get(v).size()) {
int swap = u; u = v; vV = swap;

}

// 2. MERGE: Update smaller (u) into larger (v)
LinkedList<Integer> ulList = mems.get(u);
LinkedList<Integer> vList = mems.get(v);

// Update representative for u itself
replu] = v;
vList.add(u);

// Update representatives for all members of u
for (Integer z : ulist) {
replz] = v; // The "Work"
vList.add(z); // Move member

elements.

Complexity Analysis

1. Single Union Cost

@ Worst case: O(n)

@ (Happens if we merge two sets of
size n/2)

2. Aggregate Cost (Kruskal’s)

@ How many times does a specific
element’s rep change?

@ Every time it changes, its set size
doubles.

@ Max set size is n.

@ Therefore: < log, n updates per
element.

l

Total Time: O(nlogn)]

Kruskal: Pseudocode

function KRUSKAL(G = (V, E, c))
. T 0 > MST edges

1:
2
3
4: // Sort edges by weight

5: Sort E by increasing weight: e, e2,..., g
6

7

8

9

// Process edges in order
for each edge (u,v) € E (in sorted order) do
if find(v) # find(v) then

10: T+ TU{(u,v)} > Add to MST
11: union(u, v) > Merge components
12: end if

13: if |T|=|V|—1 then

14: break > MST complete
15: end if

16: end for

17: return T

18: end function

Your Turn: Proving Kruskal's Correctness

Claim: Let A be the set of edges selected by Kruskal’'s. Then A C T for some MST T.

Proof. Proceed by induction on |A]| :
B.C.: |Al =
ILH.: Assume A C T after selecting edges.

Inductive Step: Let e = (u, v) be the next edge Kruskal adds and Visualize the Step

let S be the set of vertices in u's conn.-comp.
@ Cut: What can we say about e? Does v belong to S? S S N AV S,
I/ \\ e ’/ \‘
I ._._l}. |
@ Minimality: We know Kruskal adds edges in ! 7 = y
order. (Could there be an edge €’ crossing (S, V \ S) with R - th—{m e y
. Y p S p
W(e) < W(e) -7) Component of u -

@ Conclusion: By the Cut Property:

Kruskal: Correctness (1/2)

Kruskal's Invariant

Let A be the set of edges selected by Kruskal's algorithm. Then A is a subset of some
Minimum Spanning Tree (MST).

Proof Strategy: I-ndu-ct-|on on |A]. s \\No“ghm a2 s
o B.C.: A= is trivially a subset of any MST. . doss this cut Y
g 1 4 1
@ LLH.: Assume AC T with 0 < |A| < n—1 for some] u o—,'i:—)o v :
MST T. ' N ,

\ I' \ /I

\((:(zmponent of/u’) N S , v

- -

- ~ - -

Lemma: If e is a minimum weight edge
crossing any cut (S, V' \ S), then e
belongs to some MST.

Kruskal: Correctness (2/2)

I.S.: Let e = (u, v) be the next edge added and let S be

the set of vertices in the component containing u. Lo ST
@ Since adding e does not create a cycle, v ¢ S.) \Ng“:ﬂ”rf vl VS \\\
7 ross this cut
Thus, e crosses the cut (S, V'\ S). 1 Ve ! 3
1 1
, . . . 1 u .—|—|—>' ® V :
@ Kruskal's scans edges by increasing weight. Any 1 : 1 ’
edge crossing (S, V'\ S) with weight w(e’) < w(e) 9 / 9 /!
would have been processed earlier. (Cimfo_neitffﬂ ot

© Since u, v are currently disconnected, no such - — -
Lemma: If e is a minimum weight edge

lighter edge exists. crossing any cut (S, V' \ S), then e
= e is a Light Edge for cut (S,V'\ S) belongs to some MST.

Q AU /{e} is also a subset of an MST.

In particular, this proves A C T with |A] = n— 1 for some MST T. And since T has n—1
edges, A=T. O

Kruskal: Runtime

Kruskal's Complexity

Sorting edges: O(mlog m) = O(mlog n)
Union-Find: O(m + nlog n)

Total: O(mlogn+ m+ nlogn)
= O((m + n) log n)

Note: Since m < n?, we have logm < 2logn

Summary: Complete MST Picture

Three Greedy Algorithms, One Principle: The Cut Property

Prim’s Kruskal’'s Boruvka’'s

{ ’ } 020 & OO
Grow one tree Sort all edges All components
Add min edge Add min edge add min edge
leaving tree not creating cycle simultaneously

Key Takeaways:
@ All three algorithms are correct by the Cut Property
o Runtime: O(|V|+ (|E|)log|V]) for all three

o Kruskal's requires Union-Find for efficiency

Additional Practice

Additional Practice

Theory Task T4.

1. Consider the following problem. The Swiss government is negotiating a deal with Elon Musk
to build a tunnel system between all major Swiss cities. They put their faith into you and
consult you. They present you with a map of Switzerland. For each pair of cities it depicts
the cost of building a bidirectional tunnel between them. The Swiss government asks you to
determine the cheapest possible tunnel system such that every city is reachable from every
other city using the tunnel network (possibly by a tour that visits other cities on the way).

i) Model the problem as a graph problem. Describe the set of vertices, the set of edges and
the weights in words. What is the corresponding graph problem?

Additional Practice

HS20

ii) Use an algorithm from the lecture to solve the graph problem. State the name of the
algorithm and its running time in terms of |V| and |E| in ©-notation.

Additional Practice

HS20

2. Now, the Swiss tunneling society contacts the government and proposes to build the tunnel
between Basel and Geneva for half of Musk’s cost. Thus, the government contacts you again.
They want you to solve the following problem: Given the solution of the old problem in a) and
an edge for which the cost is divided by two, design an algorithm that updates the solution such
that the new edge cost is taken into account. In order to achieve full points, your algorithm
must run in time O(|V]).

Hint: You are only allowed to use the solution from 1., i.e. the set of tunnels in the chosen
tunnel system. You are not allowed to use any intermediate computation results from your
algorithm in 1.

i) Describe your algorithm (for example, via pseudocode). A high-level description is enough.

Additional Practice

HS20

ii) Prove the correctness of your algorithm and show that it runs in time O(|V']).

Additional Practice

HS20

i) Graph: We model the problem as a weighted undirected graph G = (V/, E, ¢), where:
@ the set of vertices V corresponds to the set of major Swiss cities
o the set of edges is E = {{u,v} | u,ve V,u#v}

o the weight of an edge c(e), e = {u, v} € E, is given by the cost of construction of a
tunnel between cities u and v.

Problem Definition: The solution to the given problem corresponds to finding an MST in G.

i) Runtime:
We can find an MST of G using Kruskal in O((| V| + |E]) log(|V|)).

Additional Practice

HS20

i) Algorithm:
Let é = {Basel, Geneva} with new weight ¢’(é) = c(é)/2.
Q@ Casel (€ T): Return T'=T.
Q@ Case2 (€¢ T):
o Let P be the unique path between Basel and Geneva in T.
o Find e, = arg max.cp c(e).
o Update:
If ¢’(8) < c(emax): Return T' = (T \ {emax}) U{€}.
Else: Return T' =T.

Runtime: Finding path P and e,y takes O(|V|) using DFS on the tree T (since
|ET| = |V|—1). All other operations are O(1). Total: O(|V]).

Additional Practice

HS20: Correctness (1/2)

Case 1: é€ T
@ Since é € T, reducing its weight decreases the total cost of T.

@ Any other spanning tree Tope, either contains é (cost decreases by same amount) or does
not (cost stays same).

@ Since T was optimal for c, it remains optimal for ¢’ (c' being the new weight function).

(see case 2 on next slide)

Additional Practice

HS20: Correctness (2/2)

Case 2: é¢ T
@ Removing epax partitions V into two sets, S and V' \ S. Let E.,; be the set of edges
crossing (S, V'\ S) in the original graph.

Since T is an MST for ¢, epnax is @ minimum weight edge for this cut:

Ve € Ecuta C(emax) < C(e)

o For the new weights ¢’, only é changes. Thus:
Ve € Eque \ {€}, c(emax) < C'(e)
@ The minimum weight edge for the cut in G is now min(emax, €).

o If /(&) < c’(emax), € is the unique minimum crossing edge and must be included (Cut
Property). Otherwise, emax remains minimal.

@ Finally, any other edge in T cannot be replaced with a cheaper edge, since if we suppose
to the contrary, then we could also improve the original tree given that no other edge
weights have changed.

Hence, T’ is a valid MST. O

Your Turn: MST " Bottlenecks”

Define the bottleneck capacity of a path as the maximum weight of any edge on that path.

Claim: The path between any two nodes u, v in an MST minimizes the bottleneck capacity.
Guided Proof:

@ Let Puyst be the path in the MST between u and v. Let enax be
Time: 5-8 Minut
the heaviest edge in Pyst. Removing emax creates a Cut (Su, Sv) e e

because ...
Su Sv
// T \\ // - \\
What do we know about w(emax) compared to other edges 4 s 4 b
crossing this cut? = ' emax \
} 1 | 1
\ I \ v g
k o T SRS > y
@ Assume for contradiction there is another path P.; in G whose RN € RN
bottleneck is strictly less than w(enax). Then: Does Py have to cross the gap?

Additional Practice

	Mini-Quiz
	Assignment
	Kruskal's Algorithm
	Union-Find
	Additional Practice

