Week 13: All-Pairs Shortest Paths

Algorithms & Data Structures

Thorben Klabunde
th-kl.ch

December 15, 2025

www.th-kl.ch

0 Quiz

© Assignment

© All-Pairs Shortest Paths
© Floyd-Warshall

© Johnson

© Matrix Multiplication
@ Additional Practice

9 Exam Season Primer

Assignment

Remarks on Assignment 12

We still have quite some ground to cover today and most exercises relate to the exchange
argument and cut property, which we covered in detail in the last two sessions. Therefore, we
will skip a detailed in-class discussion today.

However, the exercises and the introduced notions and terminology (heavy and light edges)
are important! Please refer to the Master Solution and do not hesitate to reach out if
anything should still be unclear!

All-Pairs Shortest Paths

All-Pairs Shortest Paths

Recall: Single-Source Shortest Paths (SSSP)

The Problem

Given a source s € V, find the shortest path distances

d(s, v) to all other vertices v € V.

The Landscape of Algorithms:

Graph Type / Constraint | Algorithm Runtime
Unweighted BFS O(m+n) v
Weights c(e) > 0 Dijkstra O((m + n)log n)v
General Weights Bellman-Ford O(nm) !

DAG (Directed Acyclic) Topo Sort + DP | O(m+n) v

All-Pairs Shortest Paths

Problem Definition: All-Pairs Shortest Paths

Given directed graph G = (V, E) with edge weights c : E — R.
Find the shortest path distance d(u, v) for every pair of vertices (u,v) € V x V.

Output: An n x n matrix D where D, = §(u, v).

Edge Cases:
@ (u,v) = oo if v is unreachable from u.
@ (u,v) = —oo if the path touches a negative cycle.

Why do we need this?

Motivation: Pre-computation! Instead of running Dijkstra every time a user asks for a
route, we look up the distance in O(1) from our matrix.

All-Pairs Shortest Paths

Naive Approach: Run SSSP n Times

Idea: Just iterate through every vertex v € V and run a Single-Source algorithm.
Runtime Analysis for APSP (nx SSSP):

Weights ‘ Algorithm ‘ Sparse (m = n) ‘ Dense (m =~ n?)
Unweighted nx BFS o(n?) o(n?)
Non-negative | nx Dijkstra O(n*log n) O(n®log n)
General nx Bellman-Ford | O(n’m) ~ O(n®) O(n*)

For general graphs (negative weights allowed), the naive approach is extremely slow
(O(n*)) on dense graphs!

Question: Can we design a specialized algorithm to beat O(n*)?

All-Pairs Shortest Paths

Today's Results

Good news: We can beat nx Bellman-Ford!

New Algorithms

Algorithm \ Runtime | Best for
Floyd-Warshall o(n®) Dense graphs
Johnson O(n(m + n)log n) | Sparse graphs

Comparison:
@ Floyd-Warshall: Saves factor of n over Bellman-Ford in dense case!

@ Johnson: Same as running Dijkstra n times (even with negative weights!)

Counterintuitive: Johnson achieves Dijkstra-like performance with negative weights!
How? Because all-pairs is a harder problem, giving us more flexibility...

All-Pairs Shortest Paths

DP Attempt 1: Subproblem

Obvious subproblems: d,, = shortest path from v to v

Problem: This leads to infinite recursion!

Solution: Add a parameter to make progress

Subproblem Definition (recall Bellman-Ford)

dl(,'\,") = weight of shortest path from v to v using at most m edges

@ Now we have a natural notion of "smaller”: smaller m
o Eventually we solve dl(,cfl) (at most n— 1 edges)

o If no negative cycles: simple paths have < n — 1 edges, so din=b = 5(u, v)

Bonus: Negative cycle detection!
If d\(,",’fl) < 0 for some v, then negative cycle exists.

All-Pairs Shortest Paths

DP Method 1: Recurrence

(

Question: How to compute du'f) from smaller subproblems?
Guess: What is the last edge in the shortest path?

Let the last edge be (x, v) for some vertex x

Recurrence

(m) — min d glm=1)
iy Lnel\r){dux +C(X7V)}

Interpretation: Try all possible last vertices x, take the minimum

Base case:
d(o) o {0 If u=yv

i 0o otherwise

Order of computation: Process all d(®, then all dV), then all d®), etc.
(Within each m, can compute (u, v) pairs in any order)

All-Pairs Shortest Paths

DP Method 1: Pseudocode

1: function ALLPAIRSDP1(G = (V, E,c))

2 // Base case

3 for uc V do

4 duu <0

5: forue V,ve V\{u} do

6: dyy +— 0

7

8 // DP iteration

9: for m=1ton—1do

10: for ue V do

11: for ve V do

12: for x € V do

13: if du > dux + c(x, v) then > Relaxation step
14: duv + dux + c(x,v)

15: return d
[Runtime: O(n) x O(n) x O(n) x O(n) = O(n*), not that great!]

All-Pairs Shortest Paths

Floyd-Warshall

Floyd-Warshall

Floyd-Warshall: Different Subproblems

Goal: Remove n factor to get O(n®) by choosing a different subproblem.

Assume vertices are numbered 1,2,... n

New Subproblem (Floyd-Warshall)

d*, = weight of shortest path from u to v using only vertices from {1,2,... k} as
intermediate vertices

(Note: u and v themselves can be > k; only intermediate vertices restricted)

Goal: Compute d, for all pairs (can use all vertices as intermediates)

Progress: Still n® subproblems, but...

Floyd-Warshall

Floyd-Warshall: The Key Insight

Question: How to compute d* from d¥=1?
Guess: Is vertex k used in the shortest path from u to v?

Two cases:

@ Vertex k NOT in path: Then path uses only {1,...,k—1}
Cost: dkt

@ Vertex k IS in path: Then path is u ~ k ~~ v
Cost: di 1+ dit

Recurrence:
k _ k—1 k—1 k—1
d,, = min {duv , o dy T +dg

Only 2 choices instead of n choices! Constant time per subproblem!

Floyd-Warshall

Floyd-Warshall: Why Only 2 Choices?

Before: Guessed which vertex comes last — n choices
Now: Guess whether vertex k appears at all — 2 choices
When is this useful?

What if k appears multiple times? o If cycle cost > 0: wasteful

u v @ If cycle cost = 0: doesn’t help
@ If cycle cost < 0: infinite loop!
Creates a cycle through k! Assumption: No negative cycles

Then using k once is optimal!

Floyd-Warshall

Your Turn: Complete Floyd-Warshall

Fill in the blanks to complete the algorithm

1: function FLOYDWARSHALL(G = (V/, E, ¢))

2 // Base case

3 for u,v € V do

4 if u = v then

5: dyy

6: else if (u,v) € E then

7 dyy

8 else

9: duy

10:

11: // DP: gradually allow more intermediate vertices
12: for k = to do

13: for u = to do

14: for v = to do

15: if du, > then
16: dy +—

17: return d

Floyd-Warshall

Floyd-Warshall: Handling Negative Cycles

Shortest Path Weight with Negative Cycles

—oo if dw:d}, <oo,d), < oo, and dJ, <0
o(u,v) =

w)’ Ywv

n .
d), otherwise

Interpretation:
o If there exists vertex w on a negative cycle
o AND w is reachable from u (i.e., d?, < 00)
e AND v is reachable from w (i.e., d, < o0)

@ Then we can loop through the negative cycle infinitely — d(u, v) = —oc0

neg. cycle

finite path /& finite path

_

Floyd-Warshall

Johnson

Can We Do Better for Sparse Graphs?

Current best:
o Floyd-Warshall: O(n?)
e For sparse graphs (m = O(n)): still O(n®)

Question: Running Dijkstra n times gives O(n(m + n) log n)
For sparse graphs: O(n?log n) — much better than O(n%)!

But... Dijkstra requires non-negative weights.

Crazy idea: What if we could make all edge weights non-negative?
Then we could use Dijkstra even with originally negative weights!

Johnson'’s algorithm does exactly this by performing three steps:

@ Find a function h: V — R such that wy(u, v) = w(u, v) + h(u) — h(v) > 0 for all
u,v € V or determine that a negative-weight cycle exists

@ Run Dijkstra from every vertex in the newly weighted graph G = (V/, E, wj) to find
§h(u, v)

@ Compute 6(u, v) from dp(u, v)

We now want to show:
@ why this set-up works,
@ when we can hope to find such a function h, and
© how we find h

The Naive Attempt at Enforcing Positive Weights Fails

Naive idea: Add constant D to all edges where D = | minecg c(€)|

Add D =2 to all edges:

-2
0
3 5
2 4
Original costs: New costs:

@ Via v: —2+ 3 =1 (shortest) @ Viav:0+5=5

@ Direct: 2 .
Direc @ Direct: 4 (now shortest!)

FAILS! Different paths shifted by different amounts!
2-edge path: +4. l-edge path: +2.

Johnson

Johnson’s Insight: Vertex Potentials

Key observation: We need all s-t paths to shift by the same amount!

Johnson’s reweighting:
Assign each vertex v a "potential” (or "height”) h(v) € R
Define new edge weights: &(u, v) = c(u, v) + h(u) — h(v)

Claim: For any path P = (v, v1,...,v): &(P) = c(P)+ h(s) — h(t)
Proof: Let u,v € V be arbitrary and let P be an arbitrary path from u to v:

&(P) = Zc(v,, Vis1) Do Z(c(v,, Vis1) + h(v;) — h(vit1))

= Zc(v,, vit1) + (h(vo) — h(v1)) + (h(vi) — h(v2)) + -- - + (h(vi—1) — h(vk))

telescopes to h(vp)—h(vk)

= ¢(P)+ h(s) — h(t) O

Johnson's Reweighting: The Magic

Consequence of telescoping:

All paths from s to t get shifted by exactly h(s) — h(t)
= Shortest paths are preserved!

Therefore:

If &(u, v) > 0 for all edges, we can run Dijkstra

Dijkstra finds shortest paths in & graph

These are also shortest paths in original ¢ graph!

Just need to convert back: d(u, v) = 8(u, v) — h(u) + h(v)

Remaining question: How do we find h such that é(u,v) > 07?

Finding h: System of Difference Constraints

Requirement: ¢(u,v) = c(u,v) + h(u) — h(v) > 0 for all edges (u, v)
Rearrange: h(v) — h(u) < c(u,v) for all (u,v) € E

System of Difference Constraints: Find h: V — R satisfying:

h(v) < h(u) + c(u,v) V(u,v)€E

We now show that if there are no negative cycles, we can easily find a solution to the system
using methods we already know!

The system h(v) — h(u) < ¢(u, v) has a solution <= there exist no negative cycles

Johnson: When does a solution exist?

Theorem: The system h(v) — h(u) < c(u, v) has a solution <= no negative cycles exist

Proof (=): By contraposition. Let C = (v, v1, ..., vk, vo) be a negative cycle and suppose
for contradiction that the system was solvable:
We get the following system of constraints:

h(Vl) — h(Vo) S C(V()7 Vl)
h(Vg) — h(Vl) S C(Vl, V2)

h(vo) — h(vk) < c(vk, vo)

Adding them up notice that the LHS sums to 0 since for every v € C, h(v) appears as the first
(positive) and second (negative) term.

But then: 0 < ¢(C) < 0, a contradiction, as required. O

Finding h: System of Difference Constraints

(=) Assume that no negative cycles exist and recall the system we want to solve:

System of Difference Constraints: Find h: V — R satisfying:

h(v) < h(u)+ c(u,v) V(u,v)€E

Notice that this looks like the triangle inequality!

If h(v) = d(s, v) for some source s, then triangle inequality guarantees:
0(s,v) < (s, u) + c(u,v)

If no negative cycles exist, shortest path distances satisfy our constraints!

Johnson's Construction

Problem: Which source s to use? Need to reach all vertices!

@ Add new vertex s to graph
@ Add edges (s, v) with ¢(s,v) =0 for all v € V

© Run Bellman-Ford from s
Q Set h(v) = d(s, v) for all v

Why it works:
’9/ e @ s can reach all vertices
@:- _(())_ - e @ No new cycles created
Tl @ Triangle inequality holds
e e All h(v) <0 (paths from s have cost < 0)

Johnson

Johnson's Algorithm: Putting It Together

@ Find h: Add source s, run Bellman-Ford

o If negative cycle detected: STOP (no solution)
o Otherwise: h(v) = d(s, v) for all v
e Runtime: O(nm)

@ Reweight edges: Compute &(u,v) = c(u, v) + h(u) — h(v)
o Now all &(u,v) > 0 (triangle inequality!)
e Runtime: O(m)

© Run Dijkstra n times: Once from each vertex

o Computes 3(u, v) for all pairs
o Runtime: n x O((m+ n)logn) = O(n(m + n)log n)

@ Convert back: 6(u,v) = 6(u, v) — h(u) + h(v)
o Runtime: O(n?)

Total runtime: O(nm + n(m + n)log n) = O(n(m + n)log n)

Matrix Multiplication

Matrix Multiplication

Matrix Multiplication Connection

Crazy idea: Shortest paths ~ matrix multiplication.

Standard Matrix Multiplication (C = A x B):

C,'j = Z A,‘k X Bkj
k=1

Recall our initial Shortest Path Recurrence: (attempt 1 before Floyd-Warshall)

Looking at the indices, these expressions resemble each other. But the operations
don't match... Or do they?

Matrix Multiplication

Choosing the Algebra: Min-Plus

Note: The operations of (naive) matrix multiplication can be performed in any semiring.

In particular, we can define our own semiring algebra with a "new” multiplication
p g alg 2]

and addition operation and apply matrix multiplication.

If the result is meaningful is a different question but we can do so!

Standard Arithmetic

Min-Plus Semiring

(Field R) (Tropical Semiring)
Set S R R U {0}
Addition (®) + min
Multiplication (®) X +
Add. Identity (0) 0 00 (since min(x, 00) = x)
Mult. Identity (1) 1 0 (since x +0 = x)

Matrix Multiplication

Matrix Multiplication = APSP

1. The Weight Matrix (W): 2. Distance Matrix (D(™V):

Wi; = weight of edge (k — j) D,.(k’"fl) =dist (/ — k) using < m — 1 edges

3. The Product Calculation: Let's compute the entry (i,) of D™D @ W (here ® as matr. mult):

(D" @ w); = @ (Di(kmil) ® ij)

k=1
Substitute our Semiring definitions (& — min, ® — +):

n (m—1)
= min Dik + ij
k=1 ~—~
Path i—k Edge k—j

This formula is exactly our DP recurrence: dé.m) = mink(d,.(km_l) + wyj)
Therefore, one step of Shortest Path is one Matrix Multiplication: D™ = D(™~1 @ W

Matrix Multiplication

Concrete Example: Computing One Cell

Let's compute entry [2, 3] of the product D ® W.
We need Row 2 of Left Matrix and Col 3 of Right Matrix.

[~ oz)of)

Abstract (Semiring)

Formula: @ (Rowy ® Coly) Meaning: min(Rowy + Coly)

=1 co®8 k=1 co4+8=00
k=2& (0®1) k=2: min(0+1)=1
k=3 & (2®0) k=3: min(240) =2

Result: (co®8)® (0®1) ® (2® 0) Result: min(co,1,2) =1

The shortest path from node 2 to 3 going through an intermediate node k is length 1.

Matrix Multiplication

APSP via lterative Squaring

Notice: To compute APSP, we simply need to compute the n-th power! We can do so
efficiently using iterative squaring:

wet = w

W®2 = Wet g Wel

W®* = w®? @ we?

W®8 — W4 g et

Only log n multiplications needed to reach W®"!

Runtime: O(logn) x O(n®) = O(n%logn). Not yet better than Floyd-Warshall...

Can we use one of the more efficient matrix multiplication algorithms to beat Floyd-
Warshall? For instance, Strassen’s algorithm?

Matrix Multiplication

Why Not Faster Matrix Multiplication?

Bad news: Strassen (O(n?*%%7)) requires subtraction but min has no inverse:
@ Given min(a, b) = ¢, cannot recover a and b
@ The min-plus structure is a semiring, not a ring

@ No "minus” operation exists

Conclusion: For all-pair shortest paths, we do not know a better way to perform matrix
multiplication than in O(n?) yielding O(n®log n) through iterative squaring.

However, there IS a related problem where fast matrix multiplication helps!

Matrix Multiplication

All-Pair Reachability (Transitive Closure)

Transitive Closure Problem

Input: Directed graph G = (V, E) with adjacency matrix A. Output: For all pairs (i,), does
there exist any path from i to j?

Tli,j]=1 <= Jpath i~

Algebra: Boolean Semiring
e Set: {0,1}
e Addition (®): V (OR) — "Is there a path via neighbor 1 OR 27"
e Multiplication (®): A (AND) — "Step to k AND then k — j?"

Matrix Multiplication

Note: Self-Loop Trick

Idea: Add a self-loop to every node (A" = A+ /).

@ Meaning: You can "wait” at a node for a step.

o A path of length 1 (u — v) becomes a path of length 2 (v — v — v).
Result: (A+ /)" captures all paths of length < n — 1.

Example: Graph 1 — 2 — 3. Can 1 reach 2 in < 2 steps?

Without Self-Loops (A?) With Loops ((A+/)?)
01 0 0 0 1 1 10 111
A=[0 0 1] =A=(0 0 0 A=101 1| =AP=[|0 11
0 0O 0 0 0 0 01 0 0 1
Missed 1 — 2! It found only length exactly 2 (1 — 3). Found 1 — 2! Logic: 1 — 2 — 2 (Wait).

Matrix Multiplication

Can we use Fast Matrix Multiplication?

Standard algorithms like Strassen (O(n%*8!)) require a Ring (subtraction).
The Workaround:

@ Treat Boolean matrices as Integer matrices (0,1 € Z).

@ Compute product using Fast MatMul over Integers.

@ Map any result > 0 to 1 (Boolean TRUE).

Result: Transitive Closure is solvable in roughly O(n?37) using the fastest known matrix
multiplication algorithm. This is the fastest algorithm we know to solve the transitive
closure!

Matrix Multiplication

Path Counting (Standard Arithmetic)

The Question
How many distinct walks of exactly length k exist from node / to node ;7

The Algebra: Use standard arithmetic!
e @ — + (Addition sums up the options)
@ ® — x (Multiplication combines steps in a sequence)

If A'is the adjacency matrix (0 or 1), then:

(A¥);; = Number of walks from i to j with length k

Application (Triangle Counting): The number of triangles in a graph is Trace(A%)/3.
@ A? counts paths i — -+ — --- — { (cycles of length 3).
@ Divide by 3 because each triangle is counted once for each vertex.

Matrix Multiplication

Questions?

Matrix Multiplication

Additional Practice

Additional Practice

FS20
Theory Task T4.

Assume that there are n towns 71, ..., T;, in the country Examistan. For each pair of distinct towns
T; and T}, there is exactly one road from T; to T}. All of the roads in Examistan are one-way. This
implies that there is always a road from T; to T; and another road from T} to T;. Each road has a
nonnegative integer cost that you need to pay to use this road.

For simplicity you can assume that each town T; is represented by its index 1.

Additional Practice

FS20

In the following subtasks b) and c), you can assume that the directed graph in a) is represented by
a data structure that allows you to traverse the direct successors and direct predecessors of a vertex
u in time O(deg, (u)) and O(deg_(u)) respectively, where deg_(u) is the in-degree of vertex u and
deg, (u) is the out-degree of vertex u.

b) Due to the epidemiological situation in Examistan, the authorities decided to reduce the
number of trips between different towns. Now the only way to get from one town to another
is to use the roads. Moreover, if you want to travel from town T; to the other town T}, you
must visit a test center during your trip (in 7; or Tj or elsewhere with a detour). Since test
centers are expensive, there are only k£ < n of them, and they are located only in the first &k
towns 71, ..., Tk (i-e., one test center in each of these towns).

Assume that you need to fill the table of minimal costs required to travel between all pairs of
towns, which takes into account the new rules of travelling. Provide an as efficient as possible
algorithm that takes as input a graph G from task a) and a number k, and outputs a table C
such that C[¢][j] is the minimal total cost of roads that one can use to get from 7; to T; while
also visiting a test center. You can assume that for all 1 <4 < n, C[4][i] = 0.

What is the running time of your algorithm in concise ©-notation in terms of n and k? Justify
your answer.

Additional Practice

Additional Practice

	Quiz
	Assignment
	All-Pairs Shortest Paths
	Floyd-Warshall
	Johnson
	Matrix Multiplication
	Additional Practice
	Exam Season Primer

