
Week 13: All-Pairs Shortest Paths
Algorithms & Data Structures

Thorben Klabunde

th-kl.ch

December 15, 2025

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

www.th-kl.ch

Agenda

1 Quiz

2 Assignment

3 All-Pairs Shortest Paths

4 Floyd-Warshall

5 Johnson

6 Matrix Multiplication

7 Additional Practice

8 Exam Season Primer

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Quiz

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Assignment

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Remarks on Assignment 12

We still have quite some ground to cover today and most exercises relate to the exchange
argument and cut property, which we covered in detail in the last two sessions. Therefore, we
will skip a detailed in-class discussion today.

However, the exercises and the introduced notions and terminology (heavy and light edges)
are important! Please refer to the Master Solution and do not hesitate to reach out if
anything should still be unclear!

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

All-Pairs Shortest Paths

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Recall: Single-Source Shortest Paths (SSSP)

The Problem

Given a source s → V , find the shortest path distances
d(s, v) to all other vertices v → V .

s v

The Landscape of Algorithms:

Graph Type / Constraint Algorithm Runtime

Unweighted BFS O(m + n) ↭
Weights c(e) ↑ 0 Dijkstra O((m + n) log n)↭
General Weights Bellman-Ford O(nm) !

DAG (Directed Acyclic) Topo Sort + DP O(m + n) ↭

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Problem Definition: All-Pairs Shortest Paths

Goal

Given directed graph G = (V ,E) with edge weights c : E ↓ R.
Find the shortest path distance ω(u, v) for every pair of vertices (u, v) → V ↔ V .

Output: An n ↔ n matrix D where Duv = ω(u, v).

Edge Cases:

ω(u, v) = ↗ if v is unreachable from u.

ω(u, v) = ↘↗ if the path touches a negative cycle.

Why do we need this?

Motivation: Pre-computation! Instead of running Dijkstra every time a user asks for a
route, we look up the distance in O(1) from our matrix.

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Naive Approach: Run SSSP n Times

Idea: Just iterate through every vertex v → V and run a Single-Source algorithm.

Runtime Analysis for APSP (n↔ SSSP):

Weights Algorithm Sparse (m → n) Dense (m → n
2)

Unweighted n↑ BFS O(n
2
) O(n

3
)

Non-negative n↑ Dijkstra O(n
2
log n) O(n

3
log n)

General n↑ Bellman-Ford O(n
2
m) → O(n

3
) O(n

4
)

The Bottleneck

For general graphs (negative weights allowed), the naive approach is extremely slow
(O(n4)) on dense graphs!

Question: Can we design a specialized algorithm to beat O(n4)?

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Today’s Results

Good news: We can beat n↔ Bellman-Ford!

New Algorithms

Algorithm Runtime Best for
Floyd-Warshall O(n3) Dense graphs
Johnson O(n(m + n) log n) Sparse graphs

Comparison:

Floyd-Warshall: Saves factor of n over Bellman-Ford in dense case!

Johnson: Same as running Dijkstra n times (even with negative weights!)

Counterintuitive: Johnson achieves Dijkstra-like performance with negative weights!
How? Because all-pairs is a harder problem, giving us more flexibility...

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

DP Attempt 1: Subproblem

Obvious subproblems: duv = shortest path from u to v

Problem: This leads to infinite recursion!

Solution: Add a parameter to make progress

Subproblem Definition (recall Bellman-Ford)

d
(m)
uv = weight of shortest path from u to v using at most m edges

Now we have a natural notion of ”smaller”: smaller m

Eventually we solve d
(n→1)
uv (at most n ↘ 1 edges)

If no negative cycles: simple paths have ≃ n ↘ 1 edges, so d
(n→1)
uv = ω(u, v)

Bonus: Negative cycle detection!

If d (n→1)
vv < 0 for some v , then negative cycle exists.

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

DP Method 1: Recurrence

Question: How to compute d
(m)
uv from smaller subproblems?

Guess: What is the last edge in the shortest path?

Let the last edge be (x , v) for some vertex x

Recurrence

d
(m)
uv = min

x↑V

{
d
(m→1)
ux + c(x , v)

}

Interpretation: Try all possible last vertices x , take the minimum

Base case:

d
(0)
uv =

{
0 if u = v

↗ otherwise

Order of computation: Process all d (0), then all d (1), then all d (2), etc.
(Within each m, can compute (u, v) pairs in any order)

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

DP Method 1: Pseudocode

1: function AllPairsDP1(G = (V ,E , c))
2: // Base case

3: for u ↓ V do
4: duu ↔ 0

5: for u ↓ V , v ↓ V \ {u} do
6: duv ↔ ↗
7:

8: // DP iteration

9: for m = 1 to n ↘ 1 do
10: for u ↓ V do
11: for v ↓ V do
12: for x ↓ V do
13: if duv > dux + c(x , v) then ω Relaxation step

14: duv ↔ dux + c(x , v)

15: return d

Runtime: O(n)↔ O(n)↔ O(n)↔ O(n) = O(n4), not that great!

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Floyd-Warshall

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Floyd-Warshall: Di!erent Subproblems

Goal: Remove n factor to get O(n3) by choosing a di!erent subproblem.

Assume vertices are numbered 1, 2, . . . , n

New Subproblem (Floyd-Warshall)

d
k
uv = weight of shortest path from u to v using only vertices from {1, 2, . . . , k} as

intermediate vertices

(Note: u and v themselves can be > k; only intermediate vertices restricted)

Goal: Compute d
n
uv for all pairs (can use all vertices as intermediates)

Progress: Still n3 subproblems, but...

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Floyd-Warshall: The Key Insight

Question: How to compute d
k from d

k→1?

Guess: Is vertex k used in the shortest path from u to v?

Two cases:
1 Vertex k NOT in path: Then path uses only {1, . . . , k ↘ 1}

Cost: dk→1
uv

2 Vertex k IS in path: Then path is u ↫ k ↫ v

Cost: dk→1
uk + d

k→1
kv

Recurrence:
d
k
uv = min

{
d
k→1
uv , d

k→1
uk + d

k→1
kv

}

Only 2 choices instead of n choices! Constant time per subproblem!

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Floyd-Warshall: Why Only 2 Choices?

Before: Guessed which vertex comes last → n choices
Now: Guess whether vertex k appears at all → 2 choices

What if k appears multiple times?

ku v

Creates a cycle through k!

When is this useful?

If cycle cost > 0: wasteful

If cycle cost = 0: doesn’t help

If cycle cost < 0: infinite loop!

Assumption: No negative cycles
Then using k once is optimal!

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Your Turn: Complete Floyd-Warshall

Fill in the blanks to complete the algorithm

1: function FloydWarshall(G = (V ,E , c))
2: // Base case

3: for u, v ↓ V do
4: if u = v then
5: duv ↔
6: else if (u, v) ↓ E then
7: duv ↔
8: else
9: duv ↔

10:

11: // DP: gradually allow more intermediate vertices

12: for k = to do
13: for u = to do
14: for v = to do
15: if duv > then
16: duv ↔
17: return d

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Floyd-Warshall: Handling Negative Cycles

Shortest Path Weight with Negative Cycles

ω(u, v) =

{
↘↗ if ⇐w : dn

uw < ↗, dn
wv < ↗, and d

n
ww < 0

d
n
uv otherwise

Interpretation:

If there exists vertex w on a negative cycle

AND w is reachable from u (i.e., dn
uw < ↗)

AND v is reachable from w (i.e., dn
wv < ↗)

Then we can loop through the negative cycle infinitely → ω(u, v) = ↘↗

u w v
finite path

neg. cycle

finite path

d
n
ww < 0Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Johnson

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Can We Do Better for Sparse Graphs?

Current best:

Floyd-Warshall: O(n3)

For sparse graphs (m = O(n)): still O(n3)

Question: Running Dijkstra n times gives O(n(m + n) log n)
For sparse graphs: O(n2 log n) — much better than O(n3)!

But... Dijkstra requires non-negative weights.

Crazy idea: What if we could make all edge weights non-negative?
Then we could use Dijkstra even with originally negative weights!

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Game-Plan

Johnson’s algorithm does exactly this by performing three steps:
1 Find a function h : V ↓ R such that wh(u, v) = w(u, v) + h(u)↘ h(v) ↑ 0 for all

u, v → V or determine that a negative-weight cycle exists

2 Run Dijkstra from every vertex in the newly weighted graph G = (V ,E ,wh) to find
ωh(u, v)

3 Compute ω(u, v) from ωh(u, v)

We now want to show:
1 why this set-up works,

2 when we can hope to find such a function h, and

3 how we find h

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

The Naive Attempt at Enforcing Positive Weights Fails

Naive idea: Add constant D to all edges where D = |mine↑E c(e)|

s

v

t

↘2

3

2

Original costs:

Via v : ↘2 + 3 = 1 (shortest)

Direct: 2

Add D = 2 to all edges:

s

v

t

0

5

4

New costs:

Via v : 0 + 5 = 5

Direct: 4 (now shortest!)

FAILS! Di!erent paths shifted by di!erent amounts!
2-edge path: +4. 1-edge path: +2.

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Johnson’s Insight: Vertex Potentials

Key observation: We need all s-t paths to shift by the same amount!

Johnson’s reweighting:
Assign each vertex v a ”potential” (or ”height”) h(v) → R
Define new edge weights: ĉ(u, v) = c(u, v) + h(u)↘ h(v)

Claim: For any path P = (v0, v1, . . . , vk): ĉ(P) = c(P) + h(s)↘ h(t)

Proof: Let u, v → V be arbitrary and let P be an arbitrary path from u to v :

ĉ(P) =
k→1∑

i=0

ĉ(vi , vi+1)
Def. of ĉ

=
k→1∑

i=0

(c(vi , vi+1) + h(vi)↘ h(vi+1))

=
k→1∑

i=0

c(vi , vi+1) + (h(v0)↘ h(v1)) + (h(v1)↘ h(v2)) + · · ·+ (h(vk→1)↘ h(vk))︸ ︷︷ ︸
telescopes to h(v0)→h(vk)

= c(P) + h(s)↘ h(t)

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Johnson’s Reweighting: The Magic

Consequence of telescoping:

All paths from s to t get shifted by exactly h(s)↘ h(t)

=⇒ Shortest paths are preserved!

Therefore:

If ĉ(u, v) ↑ 0 for all edges, we can run Dijkstra

Dijkstra finds shortest paths in ĉ graph

These are also shortest paths in original c graph!

Just need to convert back: ω(u, v) = ω̂(u, v)↘ h(u) + h(v)

Remaining question: How do we find h such that ĉ(u, v) ↑ 0?

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Finding h: System of Di!erence Constraints

Requirement: ĉ(u, v) = c(u, v) + h(u)↘ h(v) ↑ 0 for all edges (u, v)

Rearrange: h(v)↘ h(u) ≃ c(u, v) for all (u, v) → E

System of Di!erence Constraints: Find h : V ↓ R satisfying:

h(v) ≃ h(u) + c(u, v) ⇑(u, v) → E

We now show that if there are no negative cycles, we can easily find a solution to the system
using methods we already know!

Theorem

The system h(v)↘ h(u) ≃ c(u, v) has a solution ⇓⇒ there exist no negative cycles

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Johnson: When does a solution exist?

Theorem: The system h(v)↘ h(u) ≃ c(u, v) has a solution ⇓⇒ no negative cycles exist

Proof (⇒): By contraposition. Let C = (v0, v1, . . . , vk , v0) be a negative cycle and suppose
for contradiction that the system was solvable:
We get the following system of constraints:

h(v1)↘ h(v0) ≃ c(v0, v1)

h(v2)↘ h(v1) ≃ c(v1, v2)

...

h(v0)↘ h(vk) ≃ c(vk , v0)

Adding them up notice that the LHS sums to 0 since for every v → C , h(v) appears as the first
(positive) and second (negative) term.

But then: 0 ≃ c(C) < 0, a contradiction, as required.

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Finding h: System of Di!erence Constraints

(⇒) Assume that no negative cycles exist and recall the system we want to solve:

System of Di!erence Constraints: Find h : V ↓ R satisfying:

h(v) ≃ h(u) + c(u, v) ⇑(u, v) → E

Notice that this looks like the triangle inequality!

If h(v) = ω(s, v) for some source s, then triangle inequality guarantees:

ω(s, v) ≃ ω(s, u) + c(u, v)

If no negative cycles exist, shortest path distances satisfy our constraints!

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Johnson’s Construction

Problem: Which source s to use? Need to reach all vertices!

Johnson’s Trick

1 Add new vertex s to graph
2 Add edges (s, v) with c(s, v) = 0 for all v → V

3 Run Bellman-Ford from s

4 Set h(v) = ω(s, v) for all v

s

a

b

c

0

0

0

Why it works:

s can reach all vertices

No new cycles created

Triangle inequality holds

All h(v) ≃ 0 (paths from s have cost ≃ 0)

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Johnson’s Algorithm: Putting It Together

1 Find h: Add source s, run Bellman-Ford
If negative cycle detected: STOP (no solution)

Otherwise: h(v) = ε(s, v) for all v
Runtime: O(nm)

2 Reweight edges: Compute ĉ(u, v) = c(u, v) + h(u)↘ h(v)
Now all ĉ(u, v) ≃ 0 (triangle inequality!)

Runtime: O(m)

3 Run Dijkstra n times: Once from each vertex
Computes ε̂(u, v) for all pairs
Runtime: n ↑ O((m + n) log n) = O(n(m + n) log n)

4 Convert back: ω(u, v) = ω̂(u, v)↘ h(u) + h(v)
Runtime: O(n

2
)

Total runtime: O(nm + n(m + n) log n) = O(n(m + n) log n)

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Matrix Multiplication

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Matrix Multiplication Connection

Crazy idea: Shortest paths ⇔ matrix multiplication.

Standard Matrix Multiplication (C = A↔ B):

Cij =
n∑

k=1

Aik ↔ Bkj

Recall our initial Shortest Path Recurrence: (attempt 1 before Floyd-Warshall)

d
(m)
ij =

n
min
k=1

{
d
(m→1)
ik + wkj

}

Looking at the indices, these expressions resemble each other. But the operations
don’t match... Or do they?

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Choosing the Algebra: Min-Plus

Note: The operations of (naive) matrix multiplication can be performed in any semiring.

In particular, we can define our own semiring algebra with a ”new” multiplication
and addition operation and apply matrix multiplication.

If the result is meaningful is a di!erent question but we can do so!

Standard Arithmetic Min-Plus Semiring

(Field R) (Tropical Semiring)

Set S R R ↖ {↗}
Addition (↙) + min

Multiplication (∝) ↔ +

Add. Identity (0) 0 ↗ (since min(x,↓) = x)

Mult. Identity (1) 1 0 (since x + 0 = x)

Correctness: Because the Min-Plus structure satisfies the Semiring axioms (specifically
distributivity), standard matrix multiplication properties hold!

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Matrix Multiplication = APSP

1. The Weight Matrix (W):

Wkj = weight of edge (k ⇐ j)

2. Distance Matrix (D(m→1)):

D
(m→1)
ik = dist (i ⇐ k) using ⇒ m ↘ 1 edges

3. The Product Calculation: Let’s compute the entry (i , j) of D(m→1) ⇑W (here ⇑ as matr. mult):

(D
(m→1) ⇑W)ij =

n⊕

k=1

(
D

(m→1)
ik ⇑Wkj

)

Substitute our Semiring definitions (⇓ ⇐ min, ⇑ ⇐ +):

=
n

min
k=1



D
(m→1)
ik︸ ︷︷ ︸

Path i↑k

+ Wkj︸︷︷︸
Edge k↑j





The Connection

This formula is exactly our DP recurrence: d
(m)
ij = mink(d

(m→1)
ik + wkj)

Therefore, one step of Shortest Path is one Matrix Multiplication: D(m)
= D(m→1) ⇑W

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Concrete Example: Computing One Cell

Let’s compute entry [2, 3] of the product D ∝W .

We need Row 2 of Left Matrix and Col 3 of Right Matrix.




· · ·
↗ 0 2
· · ·



⇑




· · 8
· · 1
· · 0





Abstract (Semiring)

Formula:
⊕

(Rowk → Colk)

k = 1: ↑→ 8

k = 2: ↓ (0→ 1)

k = 3: ↓ (2→ 0)

Result: (↑→ 8)↓ (0→ 1)↓ (2→ 0)

Concrete (Intuition)

Meaning: min(Rowk + Colk)

k = 1: ↑+ 8 = ↑
k = 2: min(0 + 1) = 1

k = 3: min(2 + 0) = 2

Result: min(↑, 1, 2) = 1

The shortest path from node 2 to 3 going through an intermediate node k is length 1.

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

APSP via Iterative Squaring

Notice: To compute APSP, we simply need to compute the n-th power! We can do so
e”ciently using iterative squaring:

W
↔1 = W

W
↔2 = W

↔1 ∝W
↔1

W
↔4 = W

↔2 ∝W
↔2

W
↔8 = W

↔4 ∝W
↔4

...

Only log n multiplications needed to reach W
↔n!

Runtime: O(log n)↔ O(n3) = O(n3 log n). Not yet better than Floyd-Warshall...

Can we use one of the more e”cient matrix multiplication algorithms to beat Floyd-
Warshall? For instance, Strassen’s algorithm?

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Why Not Faster Matrix Multiplication?

Bad news: Strassen (O(n2.807)) requires subtraction but min has no inverse:

Given min(a, b) = c , cannot recover a and b

The min-plus structure is a semiring, not a ring

No ”minus” operation exists

Conclusion: For all-pair shortest paths, we do not know a better way to perform matrix
multiplication than in O(n3) yielding O(n3 log n) through iterative squaring.

However, there IS a related problem where fast matrix multiplication helps!

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

All-Pair Reachability (Transitive Closure)

Transitive Closure Problem

Input: Directed graph G = (V ,E) with adjacency matrix A. Output: For all pairs (i , j), does
there exist any path from i to j?

T [i , j] = 1 ⇓⇒ ⇐ path i ↫ j

Algebra: Boolean Semiring

Set: {0, 1}
Addition (↙): ′ (OR) ↓ ”Is there a path via neighbor 1 OR 2?”

Multiplication (∝): ∞ (AND) ↓ ”Step to k AND then k ↓ j?”

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Note: Self-Loop Trick

Add Self-Loops to Allow Waiting

Idea: Add a self-loop to every node (A↗ = A+ I).

Meaning: You can ”wait” at a node for a step.

A path of length 1 (u ↓ v) becomes a path of length 2 (u ↓ v ↓ v).

Result: (A+ I)n→1 captures all paths of length ≃ n ↘ 1.

Example: Graph 1 ↓ 2 ↓ 3. Can 1 reach 2 in ≃ 2 steps?

Without Self-Loops (A2)

A =




0 1 0

0 0 1

0 0 0



 ⇐ A
2
=




0 0 1

0 0 0

0 0 0





Missed 1 ↔ 2! It found only length exactly 2 (1 ↔ 3).

With Loops ((A+ I)2)

A
↓
=




1 1 0

0 1 1

0 0 1



 ⇐ (A
↓
)
2
=




1 1 1

0 1 1

0 0 1





Found 1 ↔ 2! Logic: 1 ↔ 2 ↔ 2 (Wait).

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Can we use Fast Matrix Multiplication?

Standard algorithms like Strassen (O(n2.81)) require a Ring (subtraction).

The Workaround:
1 Treat Boolean matrices as Integer matrices (0, 1 → Z).
2 Compute product using Fast MatMul over Integers.
3 Map any result > 0 to 1 (Boolean TRUE).

Result: Transitive Closure is solvable in roughly O(n2.37) using the fastest known matrix
multiplication algorithm. This is the fastest algorithm we know to solve the transitive
closure!

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Path Counting (Standard Arithmetic)

The Question

How many distinct walks of exactly length k exist from node i to node j?

The Algebra: Use standard arithmetic!
↙ ↓ + (Addition sums up the options)
∝ ↓ ↔ (Multiplication combines steps in a sequence)

Theorem

If A is the adjacency matrix (0 or 1), then:

(Ak)ij = Number of walks from i to j with length k

Application (Triangle Counting): The number of triangles in a graph is Trace(A
3
)/3.

A
3
ii counts paths i ⇐ · · · ⇐ · · · ⇐ i (cycles of length 3).

Divide by 3 because each triangle is counted once for each vertex.

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Questions?

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Additional Practice

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

FS20

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

FS20

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

Quiz Assignment All-Pairs Shortest Paths Floyd-Warshall Johnson Matrix Multiplication Additional Practice Exam Season Primer

	Quiz
	Assignment
	All-Pairs Shortest Paths
	Floyd-Warshall
	Johnson
	Matrix Multiplication
	Additional Practice
	Exam Season Primer

