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Mini-Quiz




@ Cl.: For n € N let f(n) = n? +1001n + n® and g(n) = 10n3. Then f(n) has the same
asymptotic growth rate as g(n) (meaning that lim,_, o % eR,).

Answer: True, both are polynomials of degree 3

Q@ ClL: n* < O(2-)

logn

. . 4 . 4
Answer: False, since lim - = lim 2%~
naooh"@ n— o0

=0

Q ClL: &"(W < O(n?)

Answer: False, since e3'"(") = p3 £ O(n?)



Q Cl.: Let f(n) = 6n>+5n+ 10 (for n € N). For each of the following definitions of g(n), is
g(n) < O(f(n))?

True | False
v g(n) = 123456789n — 200+/n

v | g(n) =0.01n%log(n)

v | g(n) =10n*+5n+ 1000




@ Cl: Let f : N — R, be some function for which we would like to prove f(n) > n? for
every n > 1. Assume that you have proven that:

o f(2)>2°
o if f(k) > k? holds for an arbitrary positive integer k, then f(k + 1) > (k + 1) holds.

Then, f(n) > n? holds for all positive integers n > 1.

Answer: False, incorrect choice of B.C., n = 1 is never proved.
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Ex. 1.1)

Exercise 1.1  Sum of Cubes (1 point).

Prove by mathematical induction that for every positive integer n,
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Ex. 1.2 - Remarks on Proof Technique

Key Elements of an Inductive Proof
When writing the inductive step, you must clearly distinguish between:
@ The statement to be proved.
o Here: Show that 2"“ 7= < v/n+1 holds (it doesn’t, don't try to show it ;))
@ The allowed assumptions.
o Here, the I.H.: Assume .7 \/ < /n is true for some n € N.




Ex. 1.2 - Remarks on Proof Technique

Warning: Correct proofs must build from valid assumptions towards the desired conclusion.

o Correct Logic: Start with the I.H. (a true statement, A) and show through a series of
valid steps that it implies your goal (statement B). This proves B.

o Fallacies:

e Starting with your goal (B) and showing it implies a known statement A. This only proves
the implication B = A, but not B itself. This would require equivalences ( <= ).

o Not checking both implications for equivalences ( <)

e Only proving the implication A —> B but not the statement A, does not allow us to
conclude B.

Always make sure you proved all statements that you cannot assume! Writing out your proofs
carefully, step-by-step with explicit explanations ensures this.



Ex. 1.2)

Exercise 1.2 Sum of reciprocals of roots (1 point).

Consider the following claim:
1 1
=+ =+ < Vn.
Vi V2 \/_
A student provides the following induction proof. Is it correct? If not, explain where the mistake is.

Base case:n =1,
—= < 1, which is true.

\/— <
Induction hypothesis: Assume the claim holds for n = k, i.e.

1 1
ﬁ+~--+ﬁ§\/£

Induction step: Then, starting from the claim we need to prove for n = k + 1 and using logical
equivalences:

1 1 1 1 1
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Vi vk~ k+1 +1
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which is true, therefore the claim holds by the principle of mathematical induction.
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Ex. 1.4a)

Exercise 1.4  Proving Inequalities.

(a) Prove the following inequality by mathematical induction
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In your solution, you should address the base case, the induction hypothesis and the induction step.
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Ex. 1.4a)

Exercise 1.4  Proving Inequalities.
(a) Prove the following inequality by mathematical induction

135, '2n—1< 1 n> 1.

2 46 7 2n ~ 3+l -

In your solution, you should address the base case, the induction hypothesis and the induction step.
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Ex. 1.3b)

(b) f(m) = log (m®) grows asymptotically slower than g(m) = (logm)®.
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Ex. 1.3c)

(¢) f(m) = e*™ grows asymptotically slower than g(m) = 23™.

Hint: Recall that for aliln,m € N, we have n™ = e™!nn,
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Ex. 1.3d)

(d)* If f(m) grows asymptotically slower than g(m), then log(f(m)) grows asymptotically slower than
log(g(m)).
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Ex. 1.3e)

(e)* f(m) = In(4/In(m)) grows asymptotically slower than g(m) = y/In(y/m).

Hint: You can use L’Hopital’s rule from sheet 0.
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Theory Recap

Theory Recap



The Challenge: How to Measure Efficiency?

Why can’t we just time our code with a stopwatch?

@ The execution time of an algorithm depends on the specific hardware.

o CPU speed and microarchitecture
e Available memory (RAM)

@ It also depends on the software environment.
o Programming language and compiler
o Operating System

—> We need a common frame for comparisons that is independent of these factors.

Theory Recap



Solution Part 1: A Universal Model

We abstract away from the specific hardware by creating a simplified model.

The Unit-Cost RAM Model (Random Access Machine)

Instead of measuring seconds, we count the number of basic operations an algorithm
performs.

@ A basic operation is an instruction that takes a constant amount of time.
@ Examples:

o Arithmetic (+, —, %, /)

o Comparisons (<, >,==)

e Memory access (assignments)

This gives us a runtime measured in number of operations, making our analysis
machine-independent.

Theory Recap



Solution Part 2: Asymptotic Analysis

Given an input instance / (a bit-string), we measure the number of operations as a function of
the length n of /.

@ Problem: Which input length to analyze?
@ Instead of assuming a specific input length, analyze the growth rate of the runtime.

Asymptotic Analysis

We analyze the growth rate of the runtime as the input size n approaches infinity (n — o).

Theory Recap



Putting It All Together: Big-O Notation

Big-O notation combines these two ideas. It describes the asymptotic upper bound on the
number of operations.

Big-O Notation
A function f(n) is in the set O(g(n)), written:

f(n) € O(g(n)) resp. in this course using the notation f(n) < O(g(n)),

if there exist positive constants ¢ and ng such that for all n > ng:

0< f(n) < c-gln)

.

In plain English: For all large inputs (n > ng), f(n) is "less than or equal to” ¢ - g(n) (it is
upper bounded by g(n)), for some constant factor ¢ > 0.

Theory Recap



Visualizing Big-O

The function f(n) is our algorithm's runtime. After the point ng, it is always below the curve
of ¢ - g(n).

Runtime
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Caution: Intuition Can Be Misleading

Asymptotic behavior only dominates for large values of n.

Example: Which algorithm is " better”?

o Algorithm A has a runtime of Ta(n) = n'%0°.

@ Algorithm B has a runtime of Tg(n) = 1.01".

Asymptotically, Algorithm A is better: O(n'%) grows slower than O(1.01").

Advice: Trust the formal definitions and analyze the structure (substitute values for variables
that contain the critical information), don't try to mentally plot the functions:

@ A is a polynomial n¥, k € N, whereas B is an exponential ¢” with ¢ >1. = B
dominates Al

Theory Recap



Limitations of Big-O Notation

While a sensible measure in many cases, Big-O is not the whole story.

o Constant factors do matter in practice. An algorithm running in 2n steps is better than
one running in 1000~ steps, even though both are O(n).

@ The asymptotic view isn’t always relevant. If your application’s input size is always
small (e.g., n < 100), the asymptotically "slower” algorithm might be faster in practice.

@ Big-O describes the worst-case scenario. Sometimes, the average-case or best-case
performance is very different.

Theory Recap



Summary: Key Takeaways

We need to analyze algorithms in a way that is independent of hardware and specific
inputs.

We do this by counting basic operations as a function of input size n.

We analyze the asymptotic growth rate (n — oo) to understand how the algorithm
scales.

Big-O notation provides a formal language for the asymptotic upper bound, ignoring
constant factors.

It's a powerful theoretical tool, but always remember its practical limitations.

Theory Recap
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2024 - Ex. 1.2

Exercise 1.2 Sums of powers of integers.
(a) Show that, for all n € No, we have > 7" | i3 < nt
(b) Show that for all n € Ny, we have > 1, i3 > %1 -n4,

Hint: Consider the second half of the sum, i.e., Zi:]’%] i3. How many terms are there in this sum?
How small can they be?
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2024 - Ex. 1.2 ctd.

Together, these two inequalities show that C1 - n* < 37 1 i3 < Cy - n4, where C; = 2% and C =1
are two constants independent of n. Hence, when n is large, > i, i3 behaves “almost like n*” up to a
constant factor.

(c)* Show that parts (a) and (b) generalise to an arbitrary k > 4, ie., show that > i* < nF*1 and
that Y 7 ;4 nF+1 holds for any n € No.
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Peer-Grading Exercise

This week's peer-grading exercise is Exercise 1.1.

Each group grades the group below in the table | sent you (resp. the last one grades the first
one). Please send the other group your solution. If you don't get their solution, please contact
me so | can send it to you.

Peer Grading
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