Week 2

Big-O Notation

Thorben Klabunde

www.th-kl.ch

29.09.2025

© Mini-Quiz

© Assignment

e Theory Recap

@ Additional Practice

© Peer Grading

Mini-Quiz

Assignment

Ex. 1.1)

Exercise 1.1 Sum of Cubes (1 point).
Prove by mathematical induction that for every positive integer n,

n?(n +1)2

P42 ttn’ ="y

Ex. 1.2)

Exercise 1.2 Sum of reciprocals of roots (1 point).

Consider the following claim:

1 1
—+ =+ <n.
VioV2 \/_
A student provides the following induction proof. Is it correct? If not, explain where the mistake is.

—= < 1, which is true.
f

Induction hypothesis: Assume the claim holds for n = k, i.e.

1 1
4t —=<Vk
Vi vk
Induction step: Then, starting from the claim we need to prove for n = k + 1 and using logical
equivalences:
1+ +1 k+<:>1+ +1<k+1 !
Vi Vi - 1 vk~ k+1
- 1 I 1 < k+1 1
Vi VE T VE+1 k+1
1 1 k k
— =+t —F=< < — <k,
Vi VET VE+1 T VEk

which is true, therefore the claim holds by the principle of mathematical induction.

Ex. 1.2 - Remarks on Proof Technique

Key Elements of an Inductive Proof
When writing the inductive step, you must clearly distinguish between:
@ The statement to be proved.
o Here: Show that 2"“ 7= < v/n+1 holds (it doesn’t, don't try to show it ;))
@ The allowed assumptions.
o Here, the I.H.: Assume .7 \/ < /n is true for some n € N.

Ex. 1.2 - Remarks on Proof Technique

Warning: Correct proofs must build from valid assumptions towards the desired conclusion.

o Correct Logic: Start with the I.H. (a true statement, A) and show through a series of
valid steps that it implies your goal (statement B). This proves B.

o Fallacies:

e Starting with your goal (B) and showing it implies a known statement A. This only proves
the implication B = A, but not B itself. This would require equivalences (<=).

o Not checking both implications for equivalences (<)

e Only proving the implication A —> B but not the statement A, does not allow us to
conclude B.

Always make sure you proved all statements that you cannot assume! Writing out your proofs
carefully, step-by-step with explicit explanations ensures this.

Ex. 1.2)

Exercise 1.2 Sum of reciprocals of roots (1 point).

Consider the following claim:

1 1
=+ =+ < Vn.
v V2 \/_
A student provides the following induction proof. Is it correct? If not, explain where the mistake is.

Base case:n =1,
— < 1, which is true.
\/_

Induction hypothesis: Assume the claim holds for n = k, i.e.

1 1
—+-+—=<Vk
Vi vk
Induction step: Then, starting from the claim we need to prove for n = k + 1 and using logical
equivalences:
1 1 1 1 1
=+t gx/k+ = =+ -+ —=<Vk+1-
Vi Vo \/ 1 vk k+1
— 1 i 1 < k+1 1
1 VE~ VE+1 VE+1
1 1 k k
= =4t =< < —=<Vk,
Vi Ve VE+TT VE

which is true, therefore the claim holds by the principle of mathematical induction.

Ex. 1.4a)

Exercise 1.4 Proving Inequalities.
(a) Prove the following inequality by mathematical induction

135, '2'n—1< 1 n> 1.

2 46 7 2n ~ 3+l -

In your solution, you should address the base case, the induction hypothesis and the induction step.

Ex. 1.4b)

(b)* Replace 3n + 1 by 3n on the right side, and try to prove the new inequality by induction. This
inequality is even weaker, hence it must be true. However, the induction proof fails. Try to explain
to yourself how is this possible?

Ex. 1.3b)

(b) f(m) = log (m®) grows asymptotically slower than g(m) = (logm)®.

Ex. 1.3c)

(¢) f(m) = e*™ grows asymptotically slower than g(m) = 23™.

Hint: Recall that for aliln,m € N, we have n™ = e™!nn,

Ex. 1.3d)

(d)* If f(m) grows asymptotically slower than g(m), then log(f(m)) grows asymptotically slower than
log(g(m)).

Ex. 1.3e)

(e)* f(m) = In(4/In(m)) grows asymptotically slower than g(m) = y/In(y/m).
Hint: You can use L’Hopital’s rule from sheet 0.

Theory Recap

Theory Recap

The Challenge: How to Measure Efficiency?

Why can’t we just time our code with a stopwatch?

@ The execution time of an algorithm depends on the specific hardware.

o CPU speed and microarchitecture
e Available memory (RAM)

@ It also depends on the software environment.
o Programming language and compiler
o Operating System

—> We need a common frame for comparisons that is independent of these factors.

Theory Recap

Solution Part 1: A Universal Model

We abstract away from the specific hardware by creating a simplified model.

The Unit-Cost RAM Model (Random Access Machine)

Instead of measuring seconds, we count the number of basic operations an algorithm
performs.

@ A basic operation is an instruction that takes a constant amount of time.
@ Examples:

o Arithmetic (+, —, %, /)

o Comparisons (<, >,==)

e Memory access (assignments)

This gives us a runtime measured in number of operations, making our analysis
machine-independent.

Theory Recap

Solution Part 2: Asymptotic Analysis

Given an input instance / (a bit-string), we measure the number of operations as a function of
the length n of /.

@ Problem: Which input length to analyze?
@ Instead of assuming a specific input length, analyze the growth rate of the runtime.

Asymptotic Analysis

We analyze the growth rate of the runtime as the input size n approaches infinity (n — o).

Theory Recap

Putting It All Together: Big-O Notation

Big-O notation combines these two ideas. It describes the asymptotic upper bound on the
number of operations.

Big-O Notation
A function f(n) is in the set O(g(n)), written:

f(n) € O(g(n)) resp. in this course using the notation f(n) < O(g(n)),

if there exist positive constants ¢ and ng such that for all n > ng:

0< f(n) < c-gln)

.

In plain English: For all large inputs (n > ng), f(n) is "less than or equal to” ¢ - g(n) (it is
upper bounded by g(n)), for some constant factor ¢ > 0.

Theory Recap

Visualizing Big-O

The function f(n) is our algorithm's runtime. After the point ng, it is always below the curve
of ¢ - g(n).

Runtime

Theory Recap

Caution: Intuition Can Be Misleading

Asymptotic behavior only dominates for large values of n.

Example: Which algorithm is " better”?

o Algorithm A has a runtime of Ta(n) = n'%0°.

@ Algorithm B has a runtime of Tg(n) = 1.01".

Asymptotically, Algorithm A is better: O(n'%) grows slower than O(1.01").

Advice: Trust the formal definitions and analyze the structure (substitute values for variables
that contain the critical information), don't try to mentally plot the functions:

@ A is a polynomial n¥, k € N, whereas B is an exponential ¢” with ¢ >1. = B
dominates Al

Theory Recap

Limitations of Big-O Notation

While a sensible measure in many cases, Big-O is not the whole story.

o Constant factors do matter in practice. An algorithm running in 2n steps is better than
one running in 1000~ steps, even though both are O(n).

@ The asymptotic view isn’t always relevant. If your application’s input size is always
small (e.g., n < 100), the asymptotically "slower” algorithm might be faster in practice.

@ Big-O describes the worst-case scenario. Sometimes, the average-case or best-case
performance is very different.

Theory Recap

Summary: Key Takeaways

We need to analyze algorithms in a way that is independent of hardware and specific
inputs.

We do this by counting basic operations as a function of input size n.

We analyze the asymptotic growth rate (n — oo) to understand how the algorithm
scales.

Big-O notation provides a formal language for the asymptotic upper bound, ignoring
constant factors.

It's a powerful theoretical tool, but always remember its practical limitations.

Theory Recap

Additional Practice

Additional Practice

2024 - Ex. 1.2

Exercise 1.2 Sums of powers of integers.
(2) Show that, for all n € No, we have Y7 , i3 < n4
(b) Show that for all n € Ny, we have > 1, i3 > 2%1 -n4,

Hint: Consider the second half of the sum, i.e., Z?:(g] i3. How many terms are there in this sum?
How small can they be?

Additional Practice

2024 - Ex. 1.2 ctd.

Together, these two inequalities show that C1 - n* < 37 143 < Cy - n4, where C; = 2% and C =1
are two constants independent of n. Hence, when n is large, > i ; i3 behaves “almost like n*” up to a
constant factor.

(c)* Show that parts (a) and (b) generalise to an arbitrary k > 4, ie., show that " | ¥ < n**1 and
that 37 | i¥ > 7 - n**1 holds for any n € No.

Additional Practice

O-Notation

(a) Prove or disprove the following statements. Justify your answer.
(1) n 7 = O(n?)
@) el = O(en)
(3) log(n* + n® + n?) = O(log(n® + n? + n))

Additional Practice

Peer Grading

Peer Grading

Peer-Grading Exercise

This week's peer-grading exercise is Exercise 1.1.

Each group grades the group below in the table | sent you (resp. the last one grades the first
one). Please send the other group your solution. If you don't get their solution, please contact
me so | can send it to you.

Peer Grading

	Mini-Quiz
	Assignment
	Theory Recap
	Additional Practice
	Peer Grading

