Week 3

Maximum Subarray Sum

Thorben Klabunde www.th-kl.ch

06.10.2025

Agenda

- Mini-Quiz
- 2 Assignment
- Theory Recap
- 4 Additional Practice
- 6 Peer Grading

• CI.: $n^8 - 800n^7 - 10000n^6 + 200n^2 \le O(0.25n^7)$

Answer: False, since $\lim_{n \to \infty} \frac{n^8 - 800n^7 - 10000n^6 + 200n^2}{0.25n^7} = \infty$

© Cl.: Let $f(n) = 4e^n$, for which of the following definitions of g(n) is $f(n) \le O(g(n))$?

True	False	
	✓	$g(n) = n^4 + n^2$
	✓	$g(n) = n^{100} + e^{100\ln(n)}$
\checkmark		$g(n)=2^{3n}$

9 You want to show using induction that a statement A(n) holds for all $n \ge 2$. Which of the following combinations of *base case* and *induction step* would form a valid proof?

- **a.** Base case: A(2) holds. Induction step: $A(k) \Rightarrow A(k+1)$ for all integers $k \ge 2$. This is just standard induction.
- **b.** Base case: A(2), A(3) holds. Induction step: $A(k) \Rightarrow A(k+2)$ for all integers $k \ge 2$. From base case n=2 we prove it for all positive even numbers and from base case n=3 we prove it for all numbers at least 3, so this covers all the numbers.
 - c. Base case: A(2) holds. Induction step: $A(k) \Rightarrow A(k+2)$ for all integers $k \ge 2$.

OLE: Is $\sum_{i=1}^{n} i^2 \le O(n^2 \log(n))$?

Answer: False. Since all terms are positive, we can lower-bound the sum by its second half:

$$\sum_{i=1}^{n} i^2 \ge \sum_{i=\lfloor n/2 \rfloor}^{n} i^2 \ge \sum_{i=\lfloor n/2 \rfloor}^{n} \left(\frac{n}{2}\right)^2 \ge \left(\frac{n}{2}\right) \cdot \left(\frac{n}{2}\right)^2 = \frac{n^3}{8}$$

The sum is in $\Omega(n^3)$, which is not in $O(n^2 \log(n))$.

① Consider the recurrence relation below, defined for $n = 2^k, k \in \mathbb{N}_0$:

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + 5n & \text{if } n > 1 \end{cases}$$

Is
$$T(n) \leq O(n)$$
?

Answer: False. This can be solved with the Master Theorem or by expansion. By expansion:

$$T(n) = 2T(n/2) + 5n$$

$$= 2(2T(n/4) + 5(n/2)) + 5n = 4T(n/4) + 2(5n)$$

$$= 4(2T(n/8) + 5(n/4)) + 2(5n) = 8T(n/8) + 3(5n)$$

$$\vdots$$

$$= 2^k T(n/2^k) + k(5n)$$

Since $n = 2^k \implies k = \log_2 n$, and the recursion stops when $n/2^k = 1$, we get: $T(n) = n \cdot T(1) + (\log_2 n)(5n) = n \cdot 0 + 5n \log_2 n = \Theta(n \log n)$

Assignment

Ex. 2.2

Exercise 2.2 Fibonacci numbers (1 point).

There are a lot of neat properties of the Fibonacci numbers that can be proved by induction. Recall that the Fibonacci numbers are defined by $f_0=0$, $f_1=1$ and the recursion relation $f_{n+1}=f_n+f_{n-1}$ for all $n\geq 1$. For example, $f_2=1$, $f_5=5$, $f_{10}=55$, $f_{15}=610$.

Prove that $f_n \geq \frac{1}{3} \cdot 1.5^n$ for $n \geq 1$.

In your solution, you should address the base case, the induction hypothesis and the induction step.

cl. For 121 it holds that
$$5n \ge \frac{1}{3} \cdot 1.5^{\circ}$$
, where $5n$ is the nth Fisonacci number.

pr. De proceed by induction on n.

B.C. Let
$$n=1$$
 and notice that $|S_1|=1 \ge 0.5 = \frac{1}{3} \cdot 1.5$.

Further let
$$n=2$$
, for which: $J_2=1>\frac{3}{4}=\frac{1}{3}\cdot\frac{8}{4}=\frac{1}{3}\cdot\left(\frac{3}{2}\right)^2$.

Ex. 2.2 - ctd.

I.H. Assume that the claim holds for some n and n+1 with n=1.

Coresul that you include all necessary essemptions in your IH. I.S. Then for 1+2 we have: $\mathcal{S}_{n+2} = \mathcal{S}_{n+1} + \mathcal{S}_n$

$$= \frac{1}{3} (1.5)^{n+1} + \frac{1}{3} (1.5)^{n}$$

$$= \frac{1}{3} (1.5)^{n+1} + 1.5^{n}$$

$$=\frac{3}{3}(1.5^{\circ}+1.5^{\circ})$$

$$=\frac{1}{3}(1.5^{\circ}(1.5+1))$$

$$=\frac{1}{3}(1.5^{1} \cdot 2.5)$$

$$= \frac{1}{3} \left(1.5^{\circ} \cdot 1.5^{2} \right) = \frac{1}{3} \cdot 1.5^{0+2}$$

By the principle of noth induction the claim holds for ele n >1.

Ex. 2.4a)

Exercise 2.4 Asymptotic growth of $\sum_{i=1}^{n} \frac{1}{i}$ (1 point).

The goal of this exercise is to show that the sum $\sum_{i=1}^n \frac{1}{i}$ behaves, up to constant factors, as $\log(n)$ when n is large. Formally, we will show $\sum_{i=1}^n \frac{1}{i} \leq O(\log n)$ and $\log n \leq O(\sum_{i=1}^n \frac{1}{i})$ as functions from $\mathbb{N}_{\geq 2}$ to \mathbb{R}^+ .

For parts (a) to (c) we assume that $n=2^k$ is a power of 2 for $k\in\mathbb{N}_0=\mathbb{N}\cup\{0\}$. We will generalise the result to arbitrary $n\in\mathbb{N}$ in part (d). For $j\in\mathbb{N}$, define

$$S_j = \sum_{i=2^{j-1}+1}^{2^j} \frac{1}{i}.$$

(a) For any $j \in \mathbb{N}$, prove that $S_j \leq 1$.

Hint: Find a common upper bound for all terms in the sum and count the number of terms.

Ex. 2.4 - ctd.

pr. Let jet se arsitrary.

$$S' = \sum_{i=2^{j-1}+i}^{2^{j}} \frac{1}{i!}$$
Step 1: Insert upper sound for veriable term

Then we have a sum of the same term

over end over which we can express as

a multiplication.

$$i=2^{j-1}+1$$
Step 2: Count terms.

$$= (2^{j-1}) \cdot \frac{1}{2^{j-1}}$$

$$= (2^{j-1}) \cdot \frac{1}{2^{j-1}}$$

$$= 2^{j-1} \text{ terms in the sum}$$

Ex. 2.4b)

(b) For any $j \in \mathbb{N}$, prove that $S_j \geq \frac{1}{2}$.

(b) cl.
$$\forall j \in \mathbb{N}$$
 ($S_j \ge \frac{1}{2}$)

pr. Let $j \in \mathbb{N}$ be arbitrary.

$$S_j = \sum_{i=2j-l+1}^{2^j} \frac{1}{i!}$$

$$\geq \sum_{i=2j-l+1}^{2^j} \frac{1}{2^j} \quad \left(\text{since } \forall j \in \mathbb{N} \left(\frac{1}{2^j} \ge 0 \land \frac{1}{2^{j+1}} \in \frac{1}{2^j} \right) \right)$$

see (a)
$$= (2^{j-1}) \cdot \frac{1}{2^j} \ge \frac{1}{2}$$

Ex. 2.4c)

(c) For any $k \in \mathbb{N}_0$, prove the following two inequalities

(c) c!
$$\forall k \in \mathbb{N}_0 \left(\sum_{i=1}^{2^k} \frac{1}{i} \leq k+1 \right)$$

pr. Let $k \in \mathbb{N}_0$ be erbitrary.

$$(i) \sum_{i=1}^{2^{k}} \frac{1}{i} = \sum_{i=1}^{l} \frac{1}{i} + \sum_{i=2^{k+1}}^{2^{l}} + \sum_{i=2^{k+1}}^{2^{k}} + \sum_{i=2^{k-1}+1}^{2^{k}} = 1 + \sum_{j=1}^{k} \sum_{i=2^{k-1}+1}^{2^{j}} \frac{(3\gamma e)}{i} \le 1 + k \cdot 1 = k+1$$

$$(ii) \sum_{i=1}^{2^{k}} \frac{1}{i} = 1 + \sum_{j=1}^{k} \sum_{i=2j-1+1}^{2^{k}} \frac{2^{j}}{2^{j}} + \frac{2^{j}}{2^{j}} = \frac{2^{j}}{2^{j}} = \frac{2^{j}}{2^{j}} + \frac{2^{j}}{2^{j}} = \frac{2^{j}}{2^{j}} = \frac{2^{j}}{2^{j}} + \frac{2^{j}}{2^{j}} = \frac{2^{j}}{2^{j}} = \frac{2^{j}}{2^{j}} + \frac{2^{j}}{2^{j}} = \frac{2^{j}}{2^{j}} + \frac{2^{j}}{2^{j}} = \frac{2^{j}}{2^{j}} + \frac{2^{j}}{2^{j}} = \frac{2^{j}}{2^{j}} = \frac{2^{j}}{2^{j}} = \frac{2^{j}}{2^{j}} + \frac{2^{j}}{2^{j}} = \frac{2^{j}}{2^{j}$$

Ex. 2.4d)

(d)* For arbitrary $n \in \mathbb{N}$, prove that

$$\sum_{i=1}^{n} \frac{1}{i} \leq \log_2(n) + 2$$

and

$$\sum_{i=1}^{n} \frac{1}{i} \ge \frac{\log_2 n}{2}.$$

Hint: Use the result from part (c) for $k_1 = \lceil \log_2 n \rceil$ and $k_2 = \lfloor \log_2 n \rfloor$. Here, for any $x \in \mathbb{R}$, $\lceil x \rceil$ is the smallest integer that is at least x and $\lfloor x \rfloor$ is the largest integer that is at most x. For example, $\lceil 1.5 \rceil = 2$, $\lfloor 1.5 \rfloor = 1$ and $\lceil 3 \rceil = \lfloor 3 \rfloor = 3$. In particular, for any $x \in \mathbb{R}$, $x \leq \lceil x \rceil < x + 1$ and x > |x| > x - 1.

Ex. 24d)

pr. Let nett be ersitrery and let k, = Togo n and ka = closens

(i)
$$\sum_{i=1}^{n} \frac{1}{i} \leq \sum_{i=1}^{k_i} \frac{1}{i} \leq k_i + 1 = \frac{\log_2 n}{1} + 1 \leq \log_2 n + 2$$

(1) by des of ki: 2k1 > 1 and Vient (1 >0)

(ii)
$$\sum_{i=1}^{n} \frac{1}{i} \ge \sum_{i=1}^{k_2} \frac{1}{i} \ge \frac{k_2+1}{2} = \frac{\log_2 n_3+1}{2} \ge \frac{(\log_2 n_3+1)+1}{2} = \frac{\log_2 n_3}{2}$$

(1) by def of k2: 2 k2 & n end Vient (+ 20)

Ex. 2.5a)

Exercise 2.5 Asymptotic growth of ln(n!).

Recall that the factorial of a positive integer n is defined as $n! = 1 \cdot 2 \cdot \dots \cdot (n-1) \cdot n$. For the following functions n ranges over $\mathbb{N}_{\geq 2}$.

(a) Show that $\ln(n!) \leq O(n \ln n)$.

Hint: You can use the fact that $n! \leq n^n$ for $n \in \mathbb{N}_{\geq 2}$ without proof.

(a) Let
$$n \in \mathbb{N}_{\geq 2}$$
 be exhitten; and notice that:
$$\ln(n!) = \ln\left(\frac{n!}{1!}i\right) = \sum_{i=1}^{n} \ln(i) \leq \sum_{i=1}^{n} \ln(n) = n \cdot \ln(n)$$

It sollows by des that In(n!) < O(n In(n)).

Ex. 2.5b)

(b) Show that $n \ln n \le O(\ln(n!))$.

Hint: You can use the fact that $(\frac{n}{2})^{\frac{n}{2}} \leq n!$ for $n \in \mathbb{N}_{\geq 2}$ without proof.

$$\lim_{\Lambda \to \infty} \frac{\Lambda \ln(\Lambda)}{\ln(\Lambda!)} \leq \lim_{\Lambda \to \infty} \frac{\Lambda \ln(\Lambda)}{\frac{\Lambda}{2} \ln(\frac{\Lambda}{2})} = \lim_{\Lambda \to \infty} 2 \cdot \frac{\ln(\Lambda)}{\ln(\frac{\Lambda}{2})} = 2 \lim_{\Lambda \to \infty} \frac{\ln(\Lambda)}{\ln(\Lambda) + \ln(\frac{\Lambda}{2})} = 2$$

Assignment

Theory Recap

The Maximum Subarray Sum Problem

Problem Definition

Given an array of integers arr, find the **contiguous** subarray (incl. \varnothing) which has the **largest sum**.

Consider the array:

$$\mathsf{arr} = [-2, 1, -3, 4, -1, 2, 1, -5, 4]$$

with max. subarray sum 6, corresponding to

$$[4, -1, 2, 1].$$

```
public class MaxSubarraySum {
   int[] arr;
   int n;

MaxSubarraySum(int[] arr) {
     this.arr = arr;
     n = arr.length;
   }
   ...
}
```

We use this problem (it has practical applications as well!) to illustrate and analyze different algorithm design paradigms: brute force, divide-and-conquer, and dynamic programming.

Approach 1: Naive Cubic Time $O(N^3)$

Idea: Iterate through all possible start indices i, all possible end indices j, and for each pair (i,j), sum up all elements from i to j.

```
Result naiveSumCubic() {
      int startIdx = -1;
int endIdx = -1;
                                                                                          How do we analyze the runtime of this
                                                                                          program?
   int maxSum = 0;
for (int i=0; i<n; i++) {

for (int j=i; j<n; j++) {

   int sum = 0; \in \infty!)
   for (int k=i; k<=j; k++) {

      sum += arr[k]; \in O(1)

And (9 to Break the structure down to the essentials:

C_1 + C_2 \cdot \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} \sum_{k=i}^{j} 1, \text{ for some } C_1, C_2 \in \mathbb{N}
                    if (sum > maxSum) {

startIdx = i;

endIdx = j;

maxSum = sum;

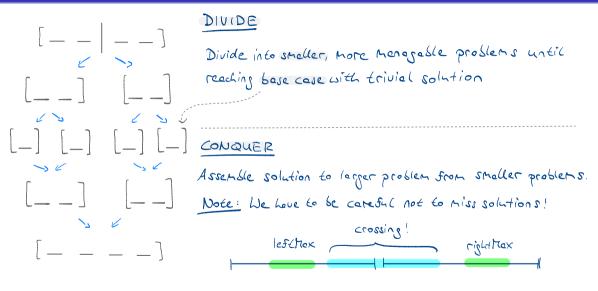
| Const. | = \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} (j-i+1)
                                                                                           = (...) (this is a sit of stant work)
                                                                                            = \Theta(\sqrt{3})
      return new Result(maxSum, startIdx, endIdx);
```

Approach 2: Improved Quadratic Time $O(N^2)$

Improvement: The third loop is inefficient. We can avoid it by reusing the sum from the previous step as we extend the subarray to the right.

```
Result naiveSumSquare() {
                                                               Runtime:
     int startIdx = -1;
     int endIdx = -1;
                                                               We have eliminated one loop and obtain:
     int maxSum = 0:
    for (int i=0; i<n; i++) {
          int sum = 0;
                                                                                C_1+C_2\cdot\sum^{n-1}\sum^{n-1}1
          for (int j=i; j<n; j++) {
              sum += arr[j]; // Just add the next element
              if (sum > maxSum) {
                                                                 = C_1 + C_2 \left( \sum_{i=0}^{n-1} (n-i) - i + 1 \right)
                   startIdx = i:
                   endIdx = j;
                   maxSum = sum:
                                                                  = C_1 + C_2 \left( \sum_{i=0}^{n-1} n - \sum_{i=0}^{n-1} i \right) for stische Sharen some l
                                                                  = c_1 + c_2(n^2 - \frac{n(n-1)}{n})
     return new Result(maxSum, startIdx, endIdx):
                                                                   = \bigoplus (n^2)
```

Approach 3a: Standard Divide and Conquer $O(N \log N)$



Approach 3: Standard Divide and Conquer $O(N \log N)$

Idea: The max subarray is either (1) in the left half, (2) in the right half, or (3) it crosses the midpoint. The crossing sum is found by scanning outwards from the middle.

```
int dcNLogN(int[] arr, int left, int right) {
   // Base Case: Only one element
   if (left == right) return Math.max(0, arr[left]):
   // 1. Divide
   int mid = left + (right - left) / 2;
   // 2. Conquer
   int leftMax = dcNLogN(arr, left, mid);
   int rightMax = dcNLogN(arr, mid + 1, right):
   // 3. Combine: Find max crossing the midpoint
   int leftCrossingMax = Integer.MIN_VALUE;
   int currentSum = 0;
   for (int i = mid; i >= left; i--) {
       currentSum += arr[i]:
       if (currentSum > leftCrossingMax) {
            leftCrossingMax = currentSum:
   int rightCrossingMax = Integer.MIN VALUE:
   currentSum = 0:
   for (int i = mid + 1; i <= right; i++) {
        currentSum += arr[i]:
       if (currentSum > rightCrossingMax) {
            rightCrossingMax = currentSum:
   int crossingMax = leftCrossingMax + rightCrossingMax:
   int result = Math.max(Math.max(leftMax, rightMax), crossingMax);
   return Math.max(0, result):
```

How do we analyze recursive algorithms?

We formulate the recurrence relation:

Notice:
$$T(1) = C \in M$$
. $C \in M$ & assume $n = 2^k$ for keN.

Then: $T(n) = 2 \cdot T(\frac{\Lambda}{2}) + \frac{\alpha \cdot n}{2} + \frac{\alpha \cdot n}{2}$

$$= 2 \cdot \left(2 \cdot T(\frac{\Lambda}{2}) + \frac{\alpha \cdot n}{2}\right) + \alpha \cdot n$$

$$= 2^2 \cdot T(\frac{\alpha}{2}) + (2 \cdot \alpha \cdot n)$$

$$= 2^2 \cdot (2 \cdot T(\frac{\alpha}{2}) + \alpha \cdot \frac{n}{4}) + (2 \cdot \alpha \cdot n)$$

$$= 2^3 \cdot T(\frac{\alpha}{2}) + (3 \cdot \alpha \cdot n)$$

$$= 2^3 \cdot T(\frac{\alpha}{2}) + (3 \cdot \alpha \cdot n)$$
To general: $2^k \cdot T(\frac{\alpha}{2}) + k \cdot \alpha \cdot n$

We divide $(\log_2 n)$ these until reaching the base case
$$\Rightarrow T(n) = 2^{\log_2 n} \cdot T(n) + \log_2 n \cdot \alpha \cdot n$$

$$\leq O(C \cdot n) + \alpha \cdot n \cdot \log_2 n \leq O(n \cdot \log_2 n)$$

Idea: Break the problem down into subproblems that we can easily build on!

```
Result linearPassSum() {
   // DP[i] = max subarray sum ending at arr[i-1]
   int[] DP = new int[n+1]:
   int maxSum = 0: int startIdx = endIdx = -1:
   int currentStartIdx = -1:
                 C- emoty sum
   for (int i=1; i<n+1; i++) {
       int prevSum = DP[i-1];
       int currentVal = arr[i-1];
       if (prevSum + currentVal > 0) {
           DP[i] = prevSum + currentVal:
           // start index remains the same
       } else {
           DP[i] = 0: // Start a new empty subarray
           currentStartIdx = i:
       if (DP[i] > maxSum) {
           maxSum = DP[i]:
           endTdx = i-1:
           startIdx = currentStartIdx:
   return new Result(maxSum, startIdx, endIdx):
```

Correctness:

Meaning of each entry (DP[i]):

```
DP[i] = Max. subservey sun ending et orr[i-]
```

Recursion:

```
DP[i] = DP[i-i] + arr[i-i] if >0 else Math.nox(0, arr[i-i]) Notice that the maximum suberray sum must append to the maximum suberray sum ending one index before.
```

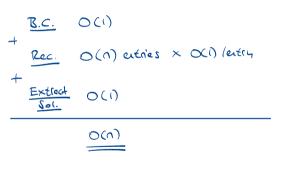
Correctness:

Every hox. substray sum ends of an index. Since we compute each entry correctly, we compute the nex. substray sum correctly.

Idea: Break the problem down into subproblems that we can easily build on!

```
Result linearPassSum() {
    // DP[i] = max subarray sum ending at arr[i-1]
    int[] DP = new int[n+1]:
    int maxSum = 0: int startIdx = endIdx = -1:
    int currentStartIdx = -1:
    DP[0] = 0:
    for (int i=1; i<n+1; i++) {
        int prevSum = DP[i-1];
        int currentVal = arr[i-1];
        if (prevSum + currentVal > 0) {
            DP[i] = prevSum + currentVal:
            // start index remains the same
        } else {
            DP[i] = 0: // Start a new empty subarray
            currentStartIdx = i:
        if (DP[i] > maxSum) {
            maxSum = DP[i]:
            endIdx = i-1:
            startIdx = currentStartIdx:
    return new Result(maxSum, startIdx, endIdx):
```

Runtime:



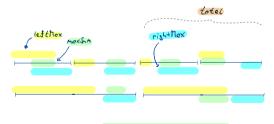
Divide-and-Conquer - Geht es besser?

Recall: The max sum is the maximum of: (1) max sum in left half, (2) max sum in right half, and (3) max sum crossing the midpoint.

```
DCResult divideAndConquerSum(int left, int right) {
    if (right == left) { // Base Case
        int val = Math.max(0, arr[left]);
        int idx = (arr[left] >= 0) ? left : -1:
        return new DCResult(val. idx. val. idx. val. idx. idx. arr[left]):
    int mid = left+((right-left)/2);
    DCResult 1 = divideAndConquerSum(left, mid):
    DCResult r = divideAndConquerSum(mid+1, right):
    // Combine sten (O(1) work)
    int leftMax = Math.max(1.leftMax, 1.total + r.leftMax):
    int rightMax = Math.max(r.rightMax, r.total + 1.rightMax);
    int maxSum:
    if (1.rightMax + r.leftMax > Math.max(1.maxSum, r.maxSum)) {
        maxSum = 1.rightMax + r,leftMax:
    } else f
        maxSum = Math.max(1.maxSum, r.maxSum):
    int total = 1.total + r.total:
    // (index tracking logic omitted for brevity)
    return new DCResult(leftMax, ..., rightMax, ..., maxSum, ..., total);
```

Runtime:

All the required information is there.
No need to recompute!



Visualizing Runtime of Recursive DnC

=) For height of
$$\log_2 n$$
 we get $2^{\log_2 n+1} - 1 = 2n - 1$ nodes, each computeble in $O(1)$.

Additional Practice

Counting Loop Iterations

/ 4 P

- a) Counting loop iterations: For the following code snippets, derive an expression for the number of times f is called. Simplify the expression as much as possible and state it in Θ -notation.
 - i) Snippet 1:

Algorithm 1

$$\mathbf{for}\; j=1,\ldots,n\; \mathbf{do} \ \mathbf{for}\; k=j^2,\ldots,(j+1)^2\; \mathbf{do} \ f()$$

(a) Since I is called once in each iteration of the inner for-loop, the number of cells amounts to:

$$\sum_{j=1}^{n} \sum_{k=j^{2}}^{(j+i)^{2}} (1 = \sum_{j=1}^{n} (j+i)^{2} - j^{2} + 1 = \sum_{j=1}^{n} 2j + 2 = 2 \cdot \sum_{j=1}^{n} j + \sum_{j=1}^{n} 2 = 2 \cdot \frac{n(n+i)}{2} + 2n$$

$$= n^{2} + 3n = \bigoplus (n^{2})$$

Peer Grading

Peer-Grading Exercise

This week's peer-grading exercise is **Exercise 2.4**

Each group grades the group below in the table I sent you (resp. the last one grades the first one). Please send the other group your solution. If you don't get their solution, please contact me so I can send it to you.

Questions?

Bounding Sums with Integrals

Recall From Last Week

We showed that for any constant $k \ge 1$, the sum of the first n k-th powers is in $\Theta(n^{k+1})$.

$$\sum_{i=1}^n i^k = \Theta(n^{k+1})$$

We proved this by finding constants c_1 and c_2 to establish the upper and lower bounds directly from the sum's properties.

A New Technique: Using Integrals

The core idea: The sum $\sum_{i=1}^{n} f(i)$ can be seen as the total area of n rectangles, each with width 1 and height f(i). This area can be bounded by the area under the curve of the continuous function f(x).

Bounding Sums with Integrals

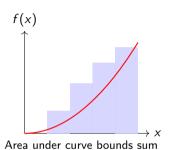
For any **monotonically increasing** function f(x):

Lower Bound: The sum is at least the area under the curve from 0 to n.

$$\sum_{i=1}^n f(i) \ge \int_0^n f(x) \, dx$$

Upper Bound: The sum is at most the area under the curve from 1 to n + 1.

$$\sum_{i=1}^n f(i) \le \int_1^{n+1} f(x) \, dx$$



Bounding Sums with Integrals

Example: Applying this to $\sum_{i=1}^{n} i^{k}$

Let $f(x) = x^k$. This function is monotonically increasing for $x \ge 0$.

Lower Bound (Ω):

$$\sum_{i=1}^{n} i^{k} \ge \int_{0}^{n} x^{k} dx = \left[\frac{x^{k+1}}{k+1} \right]_{0}^{n} = \frac{n^{k+1}}{k+1} \implies \Omega(n^{k+1})$$

Upper Bound (*O***)**:

$$\sum_{i=1}^{n} i^{k} \leq \int_{1}^{n+1} x^{k} dx = \left[\frac{x^{k+1}}{k+1} \right]_{1}^{n+1} = \frac{(n+1)^{k+1}}{k+1} - \frac{1}{k+1} \implies O(n^{k+1})$$

Since the sum is both $\Omega(n^{k+1})$ and $O(n^{k+1})$, we conclude it is $\Theta(n^{k+1})$.

Note on Monotonically Decreasing Functions

What if the function is decreasing?

The same technique works, but the inequalities for the bounds are flipped. For a monotonically

decreasing function f(x):

$$\int_{1}^{n+1} f(x) dx \le \sum_{i=1}^{n} f(i) \le f(1) + \int_{1}^{n} f(x) dx$$

Note: The upper bound is the first term f(1) plus the integral over the rest of the terms.

Your Turn!

Claim: The Harmonic Series $H_n = \sum_{i=1}^n \frac{1}{i} \in \Theta(\log n)$.

Your Turn!

Example: The Harmonic Series $H_n = \sum_{i=1}^n \frac{1}{i}$

Let f(x) = 1/x and notice that f(x) is **monotonically decreasing** for x > 0. Accordingly:

Lower Bound (Ω):

$$\sum_{i=1}^{n} \frac{1}{i} \geq \int_{1}^{n+1} \frac{1}{x} dx = \left[\ln x \right]_{1}^{n+1} = \ln(n+1) - \ln(1) = \ln(n+1) \geq \Omega(\log n)$$

Upper Bound (*O***)**:

$$\sum_{i=1}^{n} \frac{1}{i} \leq f(1) + \int_{1}^{n} \frac{1}{x} dx = 1 + \left[\ln x\right]_{1}^{n} = 1 + \ln(n) - \ln(1) = 1 + \ln(n) \leq O(\log n)$$

Therefore, the Harmonic series grows logarithmically: $H_n = \Theta(\log n)$.