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Mini-Quiz
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Mini-Quiz 2

1 Cl.: n8 → 800n7 → 10000n6 + 200n2 ↑ O(0.25n7)

Answer: False, since lim
n→↑

n8↓800n7↓10000n6+200n2

0.25n7 = ↓

2 Cl.: Let f (n) = 4en, for which of the following definitions of g(n) is f (n) ↑ O(g(n))?

True False

↭ g(n) = n4 + n2

↭ g(n) = n100 + e100 ln(n)

↭ g(n) = 2
3n
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Mini-Quiz 2

3 You want to show using induction that a statement A(n) holds for all n ↔ 2. Which of the

following combinations of base case and induction step would form a valid proof?

↭ a. Base case: A(2) holds.
Induction step: A(k) → A(k + 1) for all integers k ↑ 2.
This is just standard induction.

↭ b. Base case: A(2),A(3) holds.
Induction step: A(k) → A(k + 2) for all integers k ↑ 2.
From base case n = 2 we prove it for all positive even numbers
and from base case n = 3 we prove it for all numbers at least 3, so this covers all the
numbers.

c. Base case: A(2) holds.
Induction step: A(k) → A(k + 2) for all integers k ↑ 2.
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Mini-Quiz 2

3 Cl.: Is
∑n

i=1 i
2 ↑ O(n2 log(n))?

Answer: False. Since all terms are positive, we can lower-bound the sum by its second

half:
n∑

i=1

i2 ↔
n∑

i=↔n/2↗

i2 ↔
n∑

i=↔n/2↗

(n
2

)2
↔

(n
2

)
·
(n
2

)2
=

n3

8

The sum is in !(n3), which is not in O(n2 log(n)).
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Mini-Quiz 2

4 Consider the recurrence relation below, defined for n = 2
k , k ↗ N0:

T (n) =

{
0 if n = 1

2T (n/2) + 5n if n > 1

Is T (n) ↑ O(n)?

Answer: False. This can be solved with the Master Theorem or by expansion. By

expansion:

T (n) = 2T (n/2) + 5n

= 2(2T (n/4) + 5(n/2)) + 5n = 4T (n/4) + 2(5n)

= 4(2T (n/8) + 5(n/4)) + 2(5n) = 8T (n/8) + 3(5n)

.

.

.

= 2
kT (n/2k) + k(5n)

Since n = 2
k

=↘ k = log2 n, and the recursion stops when n/2k = 1, we get:

T (n) = n · T (1) + (log2 n)(5n) = n · 0 + 5n log2 n = ”(n log n)

This is not in O(n).Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading
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Ex. 2.2
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1) For 12.1 it holds that En - - 1
.
50

,
where En is the nth Fibonacci

number .

# We proceed by induction on n.

# Let 1 = 1 and notice that F,
= 1 = 0

.
5 = 5 1 . 5

.

Further let1=2
, For which : 2 =1 = 5.=(?



Ex. 2.2 - ctd.
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EH. Assume that the claim holds for some n and 1+ 1 with 171
.

# Then For nt2 we have :
↑

careful that you include all necessary essumptions
def.

in yeur F
.H .

1+ 2 n + 1
+ frF = F --

I.
He L

- 5 (1.5)++ 5(1.5)

= 5(1.
5 + 1. 54)

= -(1 . 51(1 . 5 + 1)

= -(1. 51 · 2
.5)

= 5 (1. 51 - 2
.25)

= -(1 .

54 · 1
.52) = 7 - 1 .

51+2

B the principle of math induction the claim holds for elen21
. ⑮B



Ex. 2.4a)
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Ex. 2.4 - ctd.
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(a) ( je (Sj = 1) .

# Let je S2 arbitrary .

25

jSj= #p1 : Insert upper sound for variable term

Then we have a sun of the same harm

i over and over
,
which we can express as

& a multiplication .

i=25- 1
+ 1

Ep2 : Count tarms
.

= 25 - (25-+ 1) + 1 = 25 terms in the sun-



Ex. 2.4b)
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(b) x Vjc (Sj = b)

# Let jeN/Se arbitrary .

25

Sj

(ine
seel n

= (21. ⑮



Ex. 2.4c)
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() 4keNok+1
# Let kelNo Se erbitrary .

[Syc)

(i)=
(a)

(ii) = 1+= I+= &

-

-Eby(s)



Ex. 2.4d)
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Ex. 2.4c)
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2
.

4d)

1 UneN( = loge(1) +21=
Let neM/ Je ersitions and Let k

,
= Toget and Re = llogeny#

[172k 5)(c)

(i) k
, + 1 = T + 1 = logan + 2

= logan + 1
-

() by def of k, :21 and FinT( +=d
&

(ii)thE-2
(1) by defofk2 : 24-1 and Viet(+ -d)



Ex. 2.5a)
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(a) Let 1 EINz2 be erbitrary and notice that :

(n(n ! ) = In)i)= (i)=4) = nh()

It Follows by daf that Inde !) = OCIn())
·



Ex. 2.5b)
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1) Let ne/22 be erbitrary and notice that :

vilnin (1)
lin

n+ 0 (n(n !)
->in=2n = 2

-
n=/

(1) by hint and since In (x) is monotone increasing on (2 , 6)
. )

It Follows by def. that nin(n) = 0 (In(n !))
. ⑰



Theory Recap
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The Maximum Subarray Sum Problem

Problem Definition

Given an array of integers arr, find the

contiguous subarray (incl. ⊋) which has the

largest sum.

Consider the array:

arr = [→2, 1,→3, 4,→1, 2, 1,→5, 4]

with max. subarray sum 6, corresponding to

[4,→1, 2, 1].

public class MaxSubarraySum {
int[] arr;
int n;

MaxSubarraySum(int[] arr) {
this.arr = arr;
n = arr.length;

}

...
}

We use this problem (it has practical applications as well!) to illustrate and analyze di!erent

algorithm design paradigms: brute force, divide-and-conquer, and dynamic programming.
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Approach 1: Naive Cubic Time O(N
3
)

Idea: Iterate through all possible start indices i , all possible end indices j , and for each pair

(i , j), sum up all elements from i to j .

Result naiveSumCubic() {
int startIdx = -1;
int endIdx = -1;
int maxSum = 0;
for (int i=0; i<n; i++) {

for (int j=i; j<n; j++) {
int sum = 0;
for (int k=i; k<=j; k++) {

sum += arr[k];
}
if (sum > maxSum) {

startIdx = i;
endIdx = j;
maxSum = sum;

}
}

}
return new Result(maxSum, startIdx, endIdx);

}

How do we analyze the runtime of this

program?

Break the structure down to the essentials!

C1 + C2 ·
n→1∑

i=0

n→1∑

j=i

j∑

k=i

1, for some C1,C2 ↑ N
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J Const .

E01)

..
Se
↳

D) conse =- 1
= (... ) (this is a sit ofgrantwork)

=(13)



Approach 2: Improved Quadratic Time O(N
2
)

Improvement: The third loop is ine”cient. We can avoid it by reusing the sum from the

previous step as we extend the subarray to the right.

Result naiveSumSquare() {
int startIdx = -1;
int endIdx = -1;
int maxSum = 0;
for (int i=0; i<n; i++) {

int sum = 0;
for (int j=i; j<n; j++) {

sum += arr[j]; // Just add the next element

if (sum > maxSum) {
startIdx = i;
endIdx = j;
maxSum = sum;

}
}

}
return new Result(maxSum, startIdx, endIdx);

}

Runtime:

We have eliminated one loop and obtain:

C1 + C2 ·
n→1∑

i=0

n→1∑

j=i

1
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= c +3) - 1) - i + 1)

=scheSee

=(n2)



Approach 3a: Standard Divide and Conquer O(N logN)
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DIVIDE
-

[ J
Divide into smaller, more manegable problems until

reaching base case with trivial solution"It1
-

-]
-X

1) 1) 1 TQUER

Assemble solution to larger problem from smaller problems .
]I Note : We have to be careful not to miss solutions !
-

[ J MaxEpis rightMax
i



Approach 3: Standard Divide and Conquer O(N logN)

Idea: The max subarray is either (1) in the left half, (2) in the right half, or (3) it crosses the

midpoint. The crossing sum is found by scanning outwards from the middle.

int dcNLogN(int[] arr, int left, int right) {
// Base Case: Only one element

if (left == right) return Math.max(0, arr[left]);

// 1. Divide

int mid = left + (right - left) / 2;

// 2. Conquer

int leftMax = dcNLogN(arr, left, mid);
int rightMax = dcNLogN(arr, mid + 1, right);

// 3. Combine: Find max crossing the midpoint

int leftCrossingMax = Integer.MIN_VALUE;
int currentSum = 0;
for (int i = mid; i >= left; i--) {

currentSum += arr[i];
if (currentSum > leftCrossingMax) {

leftCrossingMax = currentSum;
}

}
int rightCrossingMax = Integer.MIN_VALUE;
currentSum = 0;
for (int i = mid + 1; i <= right; i++) {

currentSum += arr[i];
if (currentSum > rightCrossingMax) {

rightCrossingMax = currentSum;
}

}
int crossingMax = leftCrossingMax + rightCrossingMax;
int result = Math.max(Math.max(leftMax, rightMax), crossingMax);
return Math.max(0, result);

}

How do we analyze recursive algorithms?

We formulate the recurrence relation:
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Notice : T(1) = 2 EIN .
CEI & assume n =2" for ke .

Then : Th) = 2 . T(z) + a.m

= 2 . (2 . T(G)+ a-z) + a . n

= 22 . +(2) + (2 . an)

= 22 . (2 .T(5) + a . y) + (2 . an)

= 23
. T(z) + (3 - a)

---

Engeneral : 2. T(k) + k . c . +

We divide logat times until reaching the base case

=> T(1) = 2S2V. T(1) + logeu-a . n

=01+ alogau) O(ulog(n)



Approach 4: Linear DP O(N)

Idea: Break the problem down into subproblems that we can easily build on!

Result linearPassSum() {
// DP[i] = max subarray sum ending at arr[i-1]

int[] DP = new int[n+1];
int maxSum = 0; int startIdx = endIdx = -1;
int currentStartIdx = -1;
DP[0] = 0;

for (int i=1; i<n+1; i++) {
int prevSum = DP[i-1];
int currentVal = arr[i-1];

if (prevSum + currentVal > 0) {
DP[i] = prevSum + currentVal;
// start index remains the same

} else {
DP[i] = 0; // Start a new empty subarray

currentStartIdx = i;
}

if (DP[i] > maxSum) {
maxSum = DP[i];
endIdx = i-1;
startIdx = currentStartIdx;

}
}
return new Result(maxSum, startIdx, endIdx);

}

Correctness:

Meaning of each entry (DP[i]):

Recursion:

Correctness:
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↳ empty sum !

DP(i] = Max. subarras sum ending et arrli-17

DP[i] = DP[i- 1 + arr[i-1] if <O else Meth . nex(0 , arr(i-1)
Notice that the rexine suberval sur must apped to the
Maximan suberrey sumending one index before .

Every nex , subeure, suc ends of an index -

Since we compute each entry correctly , we compute
the nex . Subarray sum correctly .



Approach 4: Linear DP O(N)

Idea: Break the problem down into subproblems that we can easily build on!

Result linearPassSum() {
// DP[i] = max subarray sum ending at arr[i-1]

int[] DP = new int[n+1];
int maxSum = 0; int startIdx = endIdx = -1;
int currentStartIdx = -1;
DP[0] = 0;

for (int i=1; i<n+1; i++) {
int prevSum = DP[i-1];
int currentVal = arr[i-1];

if (prevSum + currentVal > 0) {
DP[i] = prevSum + currentVal;
// start index remains the same

} else {
DP[i] = 0; // Start a new empty subarray

currentStartIdx = i;
}

if (DP[i] > maxSum) {
maxSum = DP[i];
endIdx = i-1;
startIdx = currentStartIdx;

}
}
return new Result(maxSum, startIdx, endIdx);

}

Runtime:
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&

- Ocaties
x Oce a

)



Divide-and-Conquer - Geht es besser?

Recall: The max sum is the maximum of: (1) max sum in left half, (2) max sum in right half,

and (3) max sum crossing the midpoint.

DCResult divideAndConquerSum(int left, int right) {
if (right == left) { // Base Case

int val = Math.max(0, arr[left]);
int idx = (arr[left] >= 0) ? left : -1;
return new DCResult(val, idx, val, idx, val, idx, idx, arr[left]);

}
int mid = left+((right-left)/2);
DCResult l = divideAndConquerSum(left, mid);
DCResult r = divideAndConquerSum(mid+1, right);

// Combine step (O(1) work)

int leftMax = Math.max(l.leftMax, l.total + r.leftMax);
int rightMax = Math.max(r.rightMax, r.total + l.rightMax);
int maxSum;
if (l.rightMax + r.leftMax > Math.max(l.maxSum, r.maxSum)) {

maxSum = l.rightMax + r.leftMax;
} else {

maxSum = Math.max(l.maxSum, r.maxSum);
}
int total = l.total + r.total;
// (index tracking logic omitted for brevity)

return new DCResult(leftMax, ..., rightMax, ..., maxSum, ..., total);
}

Runtime:
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All the required information is there.

No need to recompute !

~otel

~
leftMex

MoxSur
rightMax

D

i

--1

--



Visualizing Runtime of Recursive DnC
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--

--- &
- ...... / - -

= zia

........... .....

=>For height of logan we get yesart-1 = 21-1 nodes
,
each computable in O(1

Mus
,overal



Additional Practice
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Counting Loop Iterations
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(a) Since of is called once in each iteration of the inner for-loop ,

the number ofcells amounts to :

n(j+ 12

5=-+==
= 12 + 3=2



Peer Grading
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Peer-Grading Exercise

This week’s peer-grading exercise is Exercise 2.4

Each group grades the group below in the table I sent you (resp. the last one grades the first

one). Please send the other group your solution. If you don’t get their solution, please contact

me so I can send it to you.
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Questions?
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Bounding Sums with Integrals

Recall From Last Week

We showed that for any constant k ↓ 1, the sum of the first n k-th powers is in #(nk+1
).

n∑

i=1

ik = #(nk+1
)

We proved this by finding constants c1 and c2 to establish the upper and lower bounds directly

from the sum’s properties.

A New Technique: Using Integrals

The core idea: The sum
∑n

i=1 f (i) can be seen as the total area of n rectangles, each with

width 1 and height f (i). This area can be bounded by the area under the curve of the

continuous function f (x).
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Bounding Sums with Integrals

For any monotonically increasing function

f (x):

Lower Bound: The sum is at least the area

under the curve from 0 to n.

n∑

i=1

f (i) ↓
∫ n

0
f (x) dx

Upper Bound: The sum is at most the area

under the curve from 1 to n + 1.

n∑

i=1

f (i) ↔
∫ n+1

1
f (x) dx

x

f (x)

Area under curve bounds sum
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Bounding Sums with Integrals

Example: Applying this to
∑n

i=1 i
k

Let f (x) = xk . This function is monotonically increasing for x ↓ 0.

Lower Bound ($):

n∑

i=1

ik ↓
∫ n

0
xk dx =

[
xk+1

k + 1

]n

0

=
nk+1

k + 1
=↗ $(nk+1

)

Upper Bound (O):

n∑

i=1

ik ↔
∫ n+1

1
xk dx =

[
xk+1

k + 1

]n+1

1

=
(n + 1)

k+1

k + 1
→ 1

k + 1
=↗ O(nk+1

)

Since the sum is both $(nk+1
) and O(nk+1

), we conclude it is #(nk+1
).
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Note on Monotonically Decreasing Functions

What if the function is decreasing?

The same technique works, but the inequalities for the bounds are flipped. For a monotonically

decreasing function f (x):

∫ n+1

1
f (x) dx ↔

n∑

i=1

f (i) ↔ f (1) +

∫ n

1
f (x) dx

Note: The upper bound is the first term f (1) plus the integral over the rest of the terms.
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Your Turn!

Claim: The Harmonic Series Hn =
∑n

i=1
1
i ↑ #(log n).
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Your Turn!

Example: The Harmonic Series Hn =
∑n

i=1
1
i

Let f (x) = 1/x and notice that f (x) is monotonically decreasing for x > 0. Accordingly:

Lower Bound ($):

n∑

i=1

1

i
↓

∫ n+1

1

1

x
dx =

[
ln x

]n+1

1
= ln(n + 1)→ ln(1) = ln(n + 1) ↓ $(log n)

Upper Bound (O):

n∑

i=1

1

i
↔ f (1) +

∫ n

1

1

x
dx = 1 +

[
ln x

]n
1
= 1 + ln(n)→ ln(1) = 1 + ln(n) ↔ O(log n)

Therefore, the Harmonic series grows logarithmically: Hn = #(log n).
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