
Week 3

Maximum Subarray Sum

Thorben Klabunde

www.th-kl.ch

06.10.2025

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Agenda

1 Mini-Quiz

2 Assignment

3 Theory Recap

4 Additional Practice

5 Peer Grading

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Mini-Quiz

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Mini-Quiz 2

1 Cl.: n8 → 800n7 → 10000n6 + 200n2 ↑ O(0.25n7)

Answer: False, since lim
n→↑

n8↓800n7↓10000n6+200n2

0.25n7 = ↓

2 Cl.: Let f (n) = 4en, for which of the following definitions of g(n) is f (n) ↑ O(g(n))?

True False

↭ g(n) = n4 + n2

↭ g(n) = n100 + e100 ln(n)

↭ g(n) = 2
3n

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Mini-Quiz 2

3 You want to show using induction that a statement A(n) holds for all n ↔ 2. Which of the

following combinations of base case and induction step would form a valid proof?

↭ a. Base case: A(2) holds.
Induction step: A(k) → A(k + 1) for all integers k ↑ 2.
This is just standard induction.

↭ b. Base case: A(2),A(3) holds.
Induction step: A(k) → A(k + 2) for all integers k ↑ 2.
From base case n = 2 we prove it for all positive even numbers
and from base case n = 3 we prove it for all numbers at least 3, so this covers all the
numbers.

c. Base case: A(2) holds.
Induction step: A(k) → A(k + 2) for all integers k ↑ 2.

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Mini-Quiz 2

3 Cl.: Is
∑n

i=1 i
2 ↑ O(n2 log(n))?

Answer: False. Since all terms are positive, we can lower-bound the sum by its second

half:
n∑

i=1

i2 ↔
n∑

i=↔n/2↗

i2 ↔
n∑

i=↔n/2↗

(n
2

)2
↔

(n
2

)
·
(n
2

)2
=

n3

8

The sum is in !(n3), which is not in O(n2 log(n)).

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Mini-Quiz 2

4 Consider the recurrence relation below, defined for n = 2
k , k ↗ N0:

T (n) =

{
0 if n = 1

2T (n/2) + 5n if n > 1

Is T (n) ↑ O(n)?

Answer: False. This can be solved with the Master Theorem or by expansion. By

expansion:

T (n) = 2T (n/2) + 5n

= 2(2T (n/4) + 5(n/2)) + 5n = 4T (n/4) + 2(5n)

= 4(2T (n/8) + 5(n/4)) + 2(5n) = 8T (n/8) + 3(5n)

.

.

.

= 2
kT (n/2k) + k(5n)

Since n = 2
k

=↘ k = log2 n, and the recursion stops when n/2k = 1, we get:

T (n) = n · T (1) + (log2 n)(5n) = n · 0 + 5n log2 n = ”(n log n)

This is not in O(n).Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Assignment

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Ex. 2.2

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

1) For 12.1 it holds that En - - 1
.
50

,
where En is the nth Fibonacci

number .

We proceed by induction on n.

Let 1 = 1 and notice that F,
= 1 = 0

.
5 = 5 1 . 5

.

Further let1=2
, For which : 2 =1 = 5.=(?

Ex. 2.2 - ctd.

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

EH. Assume that the claim holds for some n and 1+ 1 with 171
.

Then For nt2 we have :
↑

careful that you include all necessary essumptions
def.

in yeur F
.H .

1+ 2 n + 1
+ frF = F --

I.
He L

- 5 (1.5)++ 5(1.5)

= 5(1.
5 + 1. 54)

= -(1 . 51(1 . 5 + 1)

= -(1. 51 · 2
.5)

= 5 (1. 51 - 2
.25)

= -(1 .

54 · 1
.52) = 7 - 1 .

51+2

B the principle of math induction the claim holds for elen21
. ⑮B

Ex. 2.4a)

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Ex. 2.4 - ctd.

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

(a) (je (Sj = 1) .

Let je S2 arbitrary .

25

jSj= #p1 : Insert upper sound for variable term

Then we have a sun of the same harm

i over and over
,
which we can express as

& a multiplication .

i=25- 1
+ 1

Ep2 : Count tarms
.

= 25 - (25-+ 1) + 1 = 25 terms in the sun-

Ex. 2.4b)

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

(b) x Vjc (Sj = b)

Let jeN/Se arbitrary .

25

Sj

(ine
seel n

= (21. ⑮

Ex. 2.4c)

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

() 4keNok+1
Let kelNo Se erbitrary .

[Syc)

(i)=
(a)

(ii) = 1+= I+= &

-

-Eby(s)

Ex. 2.4d)

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Ex. 2.4c)

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

2
.

4d)

1 UneN(= loge(1) +21=
Let neM/ Je ersitions and Let k

,
= Toget and Re = llogeny#

[172k 5)(c)

(i) k
, + 1 = T + 1 = logan + 2

= logan + 1
-

() by def of k, :21 and FinT(+=d
&

(ii)thE-2
(1) by defofk2 : 24-1 and Viet(+ -d)

Ex. 2.5a)

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

(a) Let 1 EINz2 be erbitrary and notice that :

(n(n !) = In)i)= (i)=4) = nh()

It Follows by daf that Inde !) = OCIn())
·

Ex. 2.5b)

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

1) Let ne/22 be erbitrary and notice that :

vilnin (1)
lin

n+ 0 (n(n !)
->in=2n = 2

-
n=/

(1) by hint and since In (x) is monotone increasing on (2 , 6)
.)

It Follows by def. that nin(n) = 0 (In(n !))
. ⑰

Theory Recap

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

The Maximum Subarray Sum Problem

Problem Definition

Given an array of integers arr, find the

contiguous subarray (incl. ⊋) which has the

largest sum.

Consider the array:

arr = [→2, 1,→3, 4,→1, 2, 1,→5, 4]

with max. subarray sum 6, corresponding to

[4,→1, 2, 1].

public class MaxSubarraySum {
int[] arr;
int n;

MaxSubarraySum(int[] arr) {
this.arr = arr;
n = arr.length;

}

...
}

We use this problem (it has practical applications as well!) to illustrate and analyze di!erent

algorithm design paradigms: brute force, divide-and-conquer, and dynamic programming.

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Approach 1: Naive Cubic Time O(N
3
)

Idea: Iterate through all possible start indices i , all possible end indices j , and for each pair

(i , j), sum up all elements from i to j .

Result naiveSumCubic() {
int startIdx = -1;
int endIdx = -1;
int maxSum = 0;
for (int i=0; i<n; i++) {

for (int j=i; j<n; j++) {
int sum = 0;
for (int k=i; k<=j; k++) {

sum += arr[k];
}
if (sum > maxSum) {

startIdx = i;
endIdx = j;
maxSum = sum;

}
}

}
return new Result(maxSum, startIdx, endIdx);

}

How do we analyze the runtime of this

program?

Break the structure down to the essentials!

C1 + C2 ·
n→1∑

i=0

n→1∑

j=i

j∑

k=i

1, for some C1,C2 ↑ N

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

J Const .

E01)

..
Se
↳

D) conse =- 1
= (...) (this is a sit ofgrantwork)

=(13)

Approach 2: Improved Quadratic Time O(N
2
)

Improvement: The third loop is ine”cient. We can avoid it by reusing the sum from the

previous step as we extend the subarray to the right.

Result naiveSumSquare() {
int startIdx = -1;
int endIdx = -1;
int maxSum = 0;
for (int i=0; i<n; i++) {

int sum = 0;
for (int j=i; j<n; j++) {

sum += arr[j]; // Just add the next element

if (sum > maxSum) {
startIdx = i;
endIdx = j;
maxSum = sum;

}
}

}
return new Result(maxSum, startIdx, endIdx);

}

Runtime:

We have eliminated one loop and obtain:

C1 + C2 ·
n→1∑

i=0

n→1∑

j=i

1

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

= c +3) - 1) - i + 1)

=scheSee

=(n2)

Approach 3a: Standard Divide and Conquer O(N logN)

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

DIVIDE
-

[J
Divide into smaller, more manegable problems until

reaching base case with trivial solution"It1
-

-]
-X

1) 1) 1 TQUER

Assemble solution to larger problem from smaller problems .
]I Note : We have to be careful not to miss solutions !
-

[J MaxEpis rightMax
i

Approach 3: Standard Divide and Conquer O(N logN)

Idea: The max subarray is either (1) in the left half, (2) in the right half, or (3) it crosses the

midpoint. The crossing sum is found by scanning outwards from the middle.

int dcNLogN(int[] arr, int left, int right) {
// Base Case: Only one element

if (left == right) return Math.max(0, arr[left]);

// 1. Divide

int mid = left + (right - left) / 2;

// 2. Conquer

int leftMax = dcNLogN(arr, left, mid);
int rightMax = dcNLogN(arr, mid + 1, right);

// 3. Combine: Find max crossing the midpoint

int leftCrossingMax = Integer.MIN_VALUE;
int currentSum = 0;
for (int i = mid; i >= left; i--) {

currentSum += arr[i];
if (currentSum > leftCrossingMax) {

leftCrossingMax = currentSum;
}

}
int rightCrossingMax = Integer.MIN_VALUE;
currentSum = 0;
for (int i = mid + 1; i <= right; i++) {

currentSum += arr[i];
if (currentSum > rightCrossingMax) {

rightCrossingMax = currentSum;
}

}
int crossingMax = leftCrossingMax + rightCrossingMax;
int result = Math.max(Math.max(leftMax, rightMax), crossingMax);
return Math.max(0, result);

}

How do we analyze recursive algorithms?

We formulate the recurrence relation:

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Notice : T(1) = 2 EIN .
CEI & assume n =2" for ke .

Then : Th) = 2 . T(z) + a.m

= 2 . (2 . T(G)+ a-z) + a . n

= 22 . +(2) + (2 . an)

= 22 . (2 .T(5) + a . y) + (2 . an)

= 23
. T(z) + (3 - a)

Engeneral : 2. T(k) + k . c . +

We divide logat times until reaching the base case

=> T(1) = 2S2V. T(1) + logeu-a . n

=01+ alogau) O(ulog(n)

Approach 4: Linear DP O(N)

Idea: Break the problem down into subproblems that we can easily build on!

Result linearPassSum() {
// DP[i] = max subarray sum ending at arr[i-1]

int[] DP = new int[n+1];
int maxSum = 0; int startIdx = endIdx = -1;
int currentStartIdx = -1;
DP[0] = 0;

for (int i=1; i<n+1; i++) {
int prevSum = DP[i-1];
int currentVal = arr[i-1];

if (prevSum + currentVal > 0) {
DP[i] = prevSum + currentVal;
// start index remains the same

} else {
DP[i] = 0; // Start a new empty subarray

currentStartIdx = i;
}

if (DP[i] > maxSum) {
maxSum = DP[i];
endIdx = i-1;
startIdx = currentStartIdx;

}
}
return new Result(maxSum, startIdx, endIdx);

}

Correctness:

Meaning of each entry (DP[i]):

Recursion:

Correctness:

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

↳ empty sum !

DP(i] = Max. subarras sum ending et arrli-17

DP[i] = DP[i- 1 + arr[i-1] if <O else Meth . nex(0 , arr(i-1)
Notice that the rexine suberval sur must apped to the
Maximan suberrey sumending one index before .

Every nex , subeure, suc ends of an index -

Since we compute each entry correctly , we compute
the nex . Subarray sum correctly .

Approach 4: Linear DP O(N)

Idea: Break the problem down into subproblems that we can easily build on!

Result linearPassSum() {
// DP[i] = max subarray sum ending at arr[i-1]

int[] DP = new int[n+1];
int maxSum = 0; int startIdx = endIdx = -1;
int currentStartIdx = -1;
DP[0] = 0;

for (int i=1; i<n+1; i++) {
int prevSum = DP[i-1];
int currentVal = arr[i-1];

if (prevSum + currentVal > 0) {
DP[i] = prevSum + currentVal;
// start index remains the same

} else {
DP[i] = 0; // Start a new empty subarray

currentStartIdx = i;
}

if (DP[i] > maxSum) {
maxSum = DP[i];
endIdx = i-1;
startIdx = currentStartIdx;

}
}
return new Result(maxSum, startIdx, endIdx);

}

Runtime:

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

B. O(1)

&

- Ocaties
x Oce a

)

Divide-and-Conquer - Geht es besser?

Recall: The max sum is the maximum of: (1) max sum in left half, (2) max sum in right half,

and (3) max sum crossing the midpoint.

DCResult divideAndConquerSum(int left, int right) {
if (right == left) { // Base Case

int val = Math.max(0, arr[left]);
int idx = (arr[left] >= 0) ? left : -1;
return new DCResult(val, idx, val, idx, val, idx, idx, arr[left]);

}
int mid = left+((right-left)/2);
DCResult l = divideAndConquerSum(left, mid);
DCResult r = divideAndConquerSum(mid+1, right);

// Combine step (O(1) work)

int leftMax = Math.max(l.leftMax, l.total + r.leftMax);
int rightMax = Math.max(r.rightMax, r.total + l.rightMax);
int maxSum;
if (l.rightMax + r.leftMax > Math.max(l.maxSum, r.maxSum)) {

maxSum = l.rightMax + r.leftMax;
} else {

maxSum = Math.max(l.maxSum, r.maxSum);
}
int total = l.total + r.total;
// (index tracking logic omitted for brevity)

return new DCResult(leftMax, ..., rightMax, ..., maxSum, ..., total);
}

Runtime:

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

All the required information is there.

No need to recompute !

~otel

~
leftMex

MoxSur
rightMax

D

i

--1

--

Visualizing Runtime of Recursive DnC

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

--

--- &
- / - -

= zia

...........

=>For height of logan we get yesart-1 = 21-1 nodes
,
each computable in O(1

Mus
,overal

Additional Practice

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Counting Loop Iterations

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

(a) Since of is called once in each iteration of the inner for-loop ,

the number ofcells amounts to :

n(j+ 12

5=-+==
= 12 + 3=2

Peer Grading

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Peer-Grading Exercise

This week’s peer-grading exercise is Exercise 2.4

Each group grades the group below in the table I sent you (resp. the last one grades the first

one). Please send the other group your solution. If you don’t get their solution, please contact

me so I can send it to you.

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Questions?

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Bounding Sums with Integrals

Recall From Last Week

We showed that for any constant k ↓ 1, the sum of the first n k-th powers is in #(nk+1
).

n∑

i=1

ik = #(nk+1
)

We proved this by finding constants c1 and c2 to establish the upper and lower bounds directly

from the sum’s properties.

A New Technique: Using Integrals

The core idea: The sum
∑n

i=1 f (i) can be seen as the total area of n rectangles, each with

width 1 and height f (i). This area can be bounded by the area under the curve of the

continuous function f (x).

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Bounding Sums with Integrals

For any monotonically increasing function

f (x):

Lower Bound: The sum is at least the area

under the curve from 0 to n.

n∑

i=1

f (i) ↓
∫ n

0
f (x) dx

Upper Bound: The sum is at most the area

under the curve from 1 to n + 1.

n∑

i=1

f (i) ↔
∫ n+1

1
f (x) dx

x

f (x)

Area under curve bounds sum

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Bounding Sums with Integrals

Example: Applying this to
∑n

i=1 i
k

Let f (x) = xk . This function is monotonically increasing for x ↓ 0.

Lower Bound ($):

n∑

i=1

ik ↓
∫ n

0
xk dx =

[
xk+1

k + 1

]n

0

=
nk+1

k + 1
=↗ $(nk+1

)

Upper Bound (O):

n∑

i=1

ik ↔
∫ n+1

1
xk dx =

[
xk+1

k + 1

]n+1

1

=
(n + 1)

k+1

k + 1
→ 1

k + 1
=↗ O(nk+1

)

Since the sum is both $(nk+1
) and O(nk+1

), we conclude it is #(nk+1
).

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Note on Monotonically Decreasing Functions

What if the function is decreasing?

The same technique works, but the inequalities for the bounds are flipped. For a monotonically

decreasing function f (x):

∫ n+1

1
f (x) dx ↔

n∑

i=1

f (i) ↔ f (1) +

∫ n

1
f (x) dx

Note: The upper bound is the first term f (1) plus the integral over the rest of the terms.

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Your Turn!

Claim: The Harmonic Series Hn =
∑n

i=1
1
i ↑ #(log n).

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Your Turn!

Example: The Harmonic Series Hn =
∑n

i=1
1
i

Let f (x) = 1/x and notice that f (x) is monotonically decreasing for x > 0. Accordingly:

Lower Bound ($):

n∑

i=1

1

i
↓

∫ n+1

1

1

x
dx =

[
ln x

]n+1

1
= ln(n + 1)→ ln(1) = ln(n + 1) ↓ $(log n)

Upper Bound (O):

n∑

i=1

1

i
↔ f (1) +

∫ n

1

1

x
dx = 1 +

[
ln x

]n
1
= 1 + ln(n)→ ln(1) = 1 + ln(n) ↔ O(log n)

Therefore, the Harmonic series grows logarithmically: Hn = #(log n).

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

