Week 3

Maximum Subarray Sum

Thorben Klabunde

www.th-kl.ch

06.10.2025

© Mini-Quiz

© Assignment

e Theory Recap

@ Additional Practice

© Peer Grading

Mini-Quiz

Assignment

Exercise 2.2 Fibonacci numbers (1 point).

There are a lot of neat properties of the Fibonacci numbers that can be proved by induction. Recall that
the Fibonacci numbers are defined by fo = 0, fi = 1 and the recursion relation f,+1 = f, + fn—1 for
alln > 1. For example, fo = 1, fs = 5, fio = 55, fi5 = 610.

Prove that f,, > % -1.5" forn > 1.
In your solution, you should address the base case, the induction hypothesis and the induction step.

Ex. 2.2 - ctd.

Ex. 2.4a)

n o1
i=1 4

Exercise 2.4 Asymptotic growth of > (1 point).

The goal of this exercise is to show that thesum)" , % behaves, up to constant factors, as log(n) when
n is large. Formally, we will show >"_; 1 < O(logn) andlogn < O(3"_; 1) as functions from N>,
toRT.

For parts (a) to (c) we assume that n = 2 is a power of 2 for k € Ny = N U {0}. We will generalise
the result to arbitrary n € N in part (d). For j € N, define

27

si= 3 &

=2 141"
(@) For any j € N, prove that §; < 1.

Hint: Find a common upper bound for all terms in the sum and count the number of terms.

Ex. 2.4 - ctd.

Ex. 2.4b)

(b) For any j € N, prove that S; > %

Ex. 2.4c)

(c) For any k € Ny, prove the following two inequalities

ok

Z%Slwrl

i=1

and

.| =

2ok
Sy ERL
i=1 2

Hint: You can use that 21221 % =1+ Ele S;. Use this, together with parts (a) and (b), to prove the
required inequalities.

Ex. 2.4d)

(d)* For arbitrary n € N, prove that

and

Hint: Use the result from part (c) for k1 = [logyn| and ko = |logyn|. Here, for any z € R, [z]
is the smallest integer that is at least x and |z | is the largest integer that is at most z. For example,
[1.5] = 2, [1.5] = 1 and [3] = 3] = 3. In particular, foranyz € R,z < [z] < z + 1 and
z>|z]>z—1.

Ex. 2.5a)

Exercise 2.5 Asymptotic growth of In(n!).

Recall that the factorial of a positive integer n is definedasn! =1-2..... (n—1) - n. For the following
functions n ranges over N>o.

(a) Show that In(n!) < O(nlnn).

Hint: You can use the fact thatn! < n™ forn € N>o without proof.

Ex. 2.5b)

(b) Show that nlnn < O(In(n!)).

Hint: You can use the fact that (%) 2 < n! forn € N>y without proof.

Theory Recap

Theory Recap

The Maximum Subarray Sum Problem

Problem Definition

Given an array of integers arr, find the public class MaxSubarraySum {
. . . int H
contiguous subarray (incl. @) which has the o [i.arr
;
largest sum.

MaxSubarraySum(int [] arr) {
this.arr = arr;

Consider the array: n = arr.length;

}
arr = [_27 17 _35 47 _1a 27 17 _57 4]
with max. subarray sum 6, corresponding to }
[4,-1,2,1].

We use this problem (it has practical applications as well!) to illustrate and analyze different
algorithm design paradigms: brute force, divide-and-conquer, and dynamic programming.

Theory Recap

Approach 1: Naive Cubic Time O(N?3)

Idea: Iterate through all possible start indices /, all possible end indices j, and for each pair
(7,4), sum up all elements from i to j.

Result naiveSumCubic() {
int startIdx = -1; How do we analyze the runtime of this
int endIdx = -1; progran1?
int maxSum = 0;
for (int i=0; i<mn; i++) {

for (int j=i; j<mn; j++) {
int sum = O;

Break the structure down to the essentials!

for (int k=i; k<=j; k++) { n—1n—-1 j
sum += arr[k]; G+G-> Y Y1, forsome G, G eN

} i=0 j=i k=i
if (sum > maxSum) {

startldx = i;

endIdx = j;

maxSum = sum;

}
}

return new Result(maxSum, startIdx, endIdx);

}

Theory Recap

Approach 2: Improved Quadratic Time O(N?)

Improvement: The third loop is inefficient. We can avoid it by reusing the sum from the
previous step as we extend the subarray to the right.

Resu]'.t naiveSumSquare() { Runtime:
int startldx = -1;
int endIdx = -1;
int maxSum = 0;
for (int i=0; i<mn; i++) {
int sum = 0;
for (int j=i; j<n; j++) { G + Cz.zzl
sum += arr[jl; // Just add the next element
if (sum > maxSum) {
startIdx = i;
endIdx = j;
maxSum = sum;

We have eliminated one loop and obtain:

n—1n—1

i=0 j=i

}
}

return new Result(maxSum, startIdx, endIdx);

Theory Recap

Approach 3a: Standard Divide and Conquer O(N log N)

‘ DIV(DE
. Divide. |nto staller, tore (‘—\QM!SQ‘S(L ?roSZaMJ Lt
l:] L] mac&fnd bage cage ot Leiviel golation
AN < Ny U
[.—] {_—} {_] {.] CoNQUE R
v ~ ¢
I Assedle goletion 4o (ncdu- Pcoé(ao-\ Foom Stallec ?cQS(ehs
[— —jl [— —] Note : e love €0 8¢ caredal no¢ €o misy Soletions !
¢ crogsing !
o d .
[_ o _‘K [eFhax - ~ m’&Hr‘(aX
\ J\ ‘L]

"

Theory Recap

Approach 3: Standard Divide and Conquer O(N log V)

Idea: The max subarray is either (1) in the left half, (2) in the right half, or (3) it crosses the
midpoint. The crossing sum is found by scanning outwards from the middle.

int dcNLogN(int[] arr, int left, int right) {

// Base Case: Only one element How do we analyze recursive algorithms?

if (left == right) return Math.max(0, arr(left]);

// 1. Divide

int mid - left + (right - left) / 2; We formulate the recurrence relation:

// 2. Conquer
int leftMax = dcNLogN(arr, left, mid);
int rightMax = dcNLogN(arr, mid + 1, right);

// 3. Combine: Find maz crossing the midpoint
int leftCrossingMax = Integer.MIN_VALUE;
int currentSum = 0;
for (int i = mid; i >= left; i--) {
currentSum += arr[i];
if (currentSum > leftCrossingMax) {
leftCrossingMax = currentSum;
}
}
int rightCrossingMax = Integer.MIN_VALUE;
currentSum = 0;
for (int i = mid + 1; i <= right; i++) {
currentSum += arr([i];
if (currentSum > rightCrossingMax) {
rightCrossingMax = currentSum;

}

int crossingMax = leftCrossingMax + rightCrossingMax;

int result = Math.max(Math.max(leftMax, rightMax), crossingMax);
return Math.max(0, result);

}

Theory Recap

Approach 4: Linear DP O(N)

Idea: Break the problem down into subproblems that we can easily build on!

Result linearPassSum() {

// DP[i] = maz subarray sum ending at arr[i-1] Correctness:
int[] DP = new int[n+1];
int maxSum = 0; int startldx = endldx = -1;

B Meaning of each entry (DP[i]):

for (int i=1; i<n+l; i++) {
int prevSum = DP[i-1];
int currentVal = arr[i-1];

if (prevSum + currentVal > 0) {
DP[i] = prevSum + currentVal;
// start indez remains the same .
} else { Recursion:
DP[il = 0; // Start a new empty subarray
currentStartIdx = i;

¥

if (DP[i] > maxSum) {
maxSum = DP[i];
endIdx = i-1;
startIdx = currentStartIdx;
¥ Correctness:
b

return new Result(maxSum, startIdx, endIdx);

Theory Recap

Approach 4: Linear DP O(N)

Idea: Break the problem down into subproblems that we can easily build on!

Result linearPassSum() {

// DP[i] = maz subarray sum ending at arr[i-1] Runtime:
int[] DP = new int[n+1];

int maxSum = 0; int startIdx = emdldx = -1;

int currentStartIdx = -1;

DP[0] = 0;

for (int i=1; i<n+l; i++) {
int prevSum = DP[i-1];
int currentVal = arr[i-1];

if (prevSum + currentVal > 0) {
DP[i] = prevSum + currentVal;
// start indez remains the same
} else {
DP[il = 0; // Start a new empty subarray
currentStartIdx = i;

¥

if (DP[i] > maxSum) {
maxSum = DP[i];
endIdx = i-1;
startIdx = currentStartIdx;
}
}

return new Result(maxSum, startIdx, endIdx);

Theory Recap

Divide-and-Conquer - Geht es besser?

Recall: The max sum is the maximum of: (1) max sum in left half, (2) max sum in right half,
and (3) max sum crossing the midpoint.

DCResult divideAndConquerSum(int left, int right) { .
if (right == left) { // Base Case Runtime:
int val = Math.max(0, arr[left]);
int idx = (arr[left] >= 0) 7 left : -1;
return new DCResult(val, idx, val, idx, val, idx, idx, arr[left]);

}

int mid = left+((right-left)/2);

DCResult 1 = divideAndConquerSum(left, mid);
DCResult r = divideAndConquerSum(mid+1, right);

// Combine step (0(1) work)

int leftMax = Math.max(l.leftMax, l.total + r.leftMax);

int rightMax = Math.max(r.rightMax, r.total + l.rightMax);

int maxSum;

if (l.rightMax + r.leftMax > Math.max(l.maxSum, r.maxSum)) {
maxSum = l.rightMax + r.leftMax;

} else {
maxSum = Math.max(l.maxSum, r.maxSum);

int total = l.total + r.total;

// (indez tracking logic omitted for brevity)
return new DCResult(leftMax, ..., rightMax, ..., maxSum, ..., total);

Theory Recap

Divide-and-Conquer - Geht es besser?

Recall: The max sum is the maximum of: (1) max sum in left half, (2) max sum in right half,
and (3) max sum crossing the midpoint.

DCResult divideAndConquerSum(int left, int right) { .
if (right == left) { // Base Case Runtime:

int val = Math.max(0, arr[left]);
int idx = (arr[left] >= 0) 7 left : -1; . ! p ’ -e[U=
return new DCResult(val, idx, val, idx, val, idx, idx, arr[left]); /{/(fj\a FQ\K—.((“ZO(I(\LS'\O(‘/L\Q.éO('\ Ry -
}
int mid = left+((right-left)/2);

DCResult 1 = divideAndConquerSum(left, mid); Do need to r&coh?u\é{ (

DCResult r = divideAndConquerSum(mid+1, right);

// Combine step (0(1) work) £otal
int leftMax = Math.max(l.leftMax, l.total + r.leftMax); e
int rightMax = Math.max(r.rightMax, r.total + l.rightMax); - R -

int maxSum; '

if (l.rightMax + r.leftMax > Math.max(l.maxSum, r.maxSum)) { @iy xS cigttMax
maxSum = 1.rightMax + r.leftMax; po

} else { (
maxSum = Math.max(l.maxSum, T.maxSum); P Y

int total = l.total + r.total;
// (indez tracking logic omitted for brevity)
return new DCResult(leftMax, ..., rightMax, ..., maxSum, ..., total);

Theory Recap

Visualizing Runtime of Recursive DnC

Theory Recap

Questions?

Theory Recap

Bounding Sums with Integrals

Recall From Last Week

We showed that for any constant k > 1, the sum of the first n k-th powers is in ©(n**1).

2 tk k+1

We proved this by finding constants ¢; and ¢, to establish the upper and lower bounds directly
from the sum's properties.

A New Technique: Using Integrals

The core idea: The sum Y 7 | f(i) can be seen as the total area of n rectangles, each with
width 1 and height f(i). This area can be bounded by the area under the curve of the
continuous function f(x).

Theory Recap

Bounding Sums with Integrals

For any monotonically increasing function f(x)
f(x):

Lower Bound: The sum is at least the area
under the curve from 0 to n.

Z fF(i) > /0 f(x) dx

Upper Bound: The sum is at most the area
under the curve from 1 to n+ 1.

>) < /1 £(x) dx

X
Area under curve bounds sum

Theory Recap

Bounding Sums with Integrals

Example: Applying this to Y7 ik

Let f(x) = x*. This function is monotonically increasing for x > 0.

Lower Bound (Q):

" " xk+17" g K1
<> — -

E i /onX [k JO p 1z§2(n)

Upper Bound (O):

n n+1 k+1 70+l 1)k+1 1
ik S/ K — | X _ (1) — O(n*+Y)
Z}_l .) k+1 k+1

Since the sum is both Q(n¥*1) and O(n**1), we conclude it is ©(n*+1).

Theory Recap

Note on Monotonically Decreasing Functions

What if the function is decreasing?

The same technique works, but the inequalities for the bounds are flipped. For a monotonically

decreasing function f(x):

/jﬂ dx<Zf < (1) + /lnf(x)dx

Note: The upper bound is the first term f(1) plus the integral over the rest of the terms.

Theory Recap

Your Turn!

Claim: The Harmonic Series H, = >, 1 € ©(log n).

Theory Recap

Additional Practice

Additional Practice

Counting Loop lterations

a) Counting loop iterations: For the following code snippets, derive an expression for the number

of times f is called. Simplify the expression as much as possible and state it in ©-notation.

i) Snippet 1:

Algorithm 1
for j=1,...,ndo
for k=3%...,(j +1)? do
f0

Additional Practice

How fast does n! grow?

Show that n! ~ (2)".

Additional Practice

Peer Grading

Peer Grading

Peer-Grading Exercise

This week's peer-grading exercise is Exercise 2.4

Each group grades the group below in the table | sent you (resp. the last one grades the first
one). Please send the other group your solution. If you don't get their solution, please contact
me so | can send it to you.

Peer Grading

	Mini-Quiz
	Assignment
	Theory Recap
	Additional Practice
	Peer Grading

