
Week 4
Searching & Sorting

Thorben Klabunde

www.th-kl.ch

13.10.2025

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Agenda

1 Mini-Quiz

2 Assignment

3 Theory Recap

4 Additional Practice

5 Peer Grading

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Mini-Quiz

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Mini-Quiz 3

1 Cl.: Let f , g : N → R+ be some functions. Then, we have
max{f (n), g(n)} ↑ O(f (n) + g(n)).

Answer: True. For any two positive numbers a, b, we know max{a, b} ↑ a+ b. This
holds for all n ↓ N, so the claim is true.

2 Cl.: Suppose you have an algorithm with runtime T (n) where T (n) ↑ T (n/2) + C for
some constant C > 0 and T (1) = 1. Then, T (n) ↑ O(log n).

Answer: True. This is the recurrence for algorithms like Binary Search. By expansion, we
get T (n) ↑ T (1) + C log2(n) = 1 + C log2(n), which is in O(log n).

3 Cl.: nn ↔ !(100n).

Answer: True. We check the limit limn→↑
100n

nn = limn→↑
(
100
n

)n
= 0. Since the limit is

0, 100n = o(nn), which implies nn = !(100n).

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Mini-Quiz 3

4 Cl.: n5 + 10n4 log(n) = ”(n5 log(n)).

Answer: False. We check the limit
limn→↑

n5+10n4 log(n)
n5 log(n) = limn→↑

(
1

log(n) +
10
n

)
= 0 + 0 = 0. Since the limit is 0, the

numerator is o of the denominator, so n5 + 10n4 log(n) = o(n5 log(n)), and therefore
O(n5 log(n)) is false.

5 Cl.: 2log10(n) = ”(2ln(n)).

Answer: False. We can write the right hand side as 2log10(n) = 2ln(n)/ ln(10) so checking it
by limits we have

lim
n→↑

2ln(n)/ ln(10)

2ln(n)
= lim

n→↑
2ln(n)(1/ ln(10)↓1) = 0

as 1/ ln(10)↗ 1 is negative so the statement is false.

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Mini-Quiz 3

6 Alice has designed a new comparison-based search algorithm for sorted arrays that works
by iteratively squaring the search range starting at index 2. You have checked the
algorithm and it correctly solves the problem. She claims that this algorithm runs in time
O(log(log(n))) in the worst case.

↭ a. Alice is mistaken, her algorithm is slower than O(log(log(n))).
We know from the lecture that any comparison-based search algorithm requires !(log n)
time in the worst case, so a runtime of O(log(log(n))) is not possible.

b. Yes, iterated squaring leads to a O(log(log(n))) runtime.
c. Without knowing the details of the algorithm, we cannot make a statement about its

worst-case runtime.

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Mini-Quiz 3

7 Which sorting algorithm from the lecture does the pseudocode snippet below implement?

for j = 1, 2, ..., n-1 do:
max = 1
for k = 1, 2, ..., n-j+1 do:

if A[k] > A[max] then:
max = k

if max < n-j+1 then:
Swap A[max] and A[n-j+1]

↭ a. Selection Sort
b. Insertion Sort
c. Merge Sort
d. Bubble Sort

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Mini-Quiz 3

8 Suppose you have an algorithm with runtime T (n) on an input of size n. Assume you
know that T (n) ↔ 2 · T (n/2) + dn for some constant d > 0 and that T (1) = 10. Then,
T (n) ↔ !(n1.5).

Answer: False. This recurrence resembles the runtime of Merge Sort, which we know is
O(n log n). Since lim

n→↑
n1.5

n log n = ↘, we know that n log n is not in !(n1.5).

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Mini-Quiz 3

9 Cl.: Linear search has a worst-case complexity of ”(n) on sorted arrays.

Answer: True. The array being sorted doesn’t help linear search. In the worst case (e.g.,
searching for the last element), we still have to check all n elements.

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Mini-Quiz 3

10 Consider the following pseudocode. Which
expression describes the exact number of
calls to f ()?

i <- 1
while i <= n:

j <- 1
while j <= i:

f()
j <- j + 1

i <- i + 1

↭a.
n∑

i=1




i∑

j=1

1





The outer loop runs from i = 1 to n. For
each i , the inner loop runs from j = 1 to i ,
calling f () once each time.

b.
n∑

i=1

i ·




i∑

j=1

1





c.
n∑

i=1



1 +
i∑

j=1

1





d.
n∑

i=1




n∑

j=1

1





Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Assignment

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Feedback Assignment 2

Fibonacci Exercise: Remember to cover all required cases in the B.C. and, consequently,
also in the I.H. At the latest, when writing your proof and using the I.H. you should check
that all the assumed cases are covered.

Limits: Generally well done but please double check your calculations for arithmetic
errors. When you apply a Theorem, get in the habit of briefly stating it.

Bounds: Well done! General feedback on proof structure: Try to keep your proofs clearly
structured (left to right, top to bottom) and guide the reader on how your statements are
connected.

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Ex. 3.1.b (3)

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

3)=
Let F(n) = 1(e"-1) and g(n)=n) and notice :

Chint)
~Sev - 1)

= F(g))) = F(g()) =Cr since :[E
(n(n)

Ex. 3.2

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Ex. 3.2c)

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

M =5

↓ 4

Visualization for "0110100 1110 with M = 5
,
K = 2

.

-

SUFFIXE -> PREFIX

number of onesimeCPREFX 12 1 1 2 07
(pert(S) S SUFFIX 10 2 12 0]

Compute all combinations of prefix-sun-suffix-sur that yield he when combined
.

Ex. 3.2d)

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Runtime :

substrings in it half substrings in 21d half T() = 2-T()+--

-
= T() = O(n(og1)

substrings across see last week's detailed
Middle analysis

Ex. 3.4a)

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

(a)

30x
soc Goal

There is a constant number of set-up operations and one for-loop

performing n iterations, where each operation takes(1) . Hende , in total we get o() .

Ex. 3.4b)

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

() Recall from last week's essignment that for the nth Fibonacci number
it holds that : Fish = t . 1

.
50

Notice then : 12 Fib
, 2 - 1 . 51 => logi · - (3 · k) =

109(3) + log(k)
= 1

log (1 . 5)
=>1 = O(log(k)

given that we compute in in OG) , we obtain a rantine of O(log (k)

(we only need to execute O(logk) iterations of the loop)

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Iterative Squaring :

Runzine : T(n) = T(z) + 1
-

= T(G) + 2

= T(1) + log1
- Ollogn(

Theory Recap

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Sorting Searching: The Big Picture

This week, the three key things you should learn are how to:

Characterize the Search & Sort Problem
Sorting data makes searching much faster (O(n) → O(log n)). Di!erent sorting
algorithms have fundamentally di!erent runtimes (O(n log n) vs. O(n2)).

Proving Theoretical Limits to discuss Optimality
Using decision trees, we proved a lower bound for an entire class of algorithms. For
comparison-based search, this limit is ”(log n), making Binary Search optimal.

Prove Correctness using Loop Invariants
Loop invariants provide a formal way to prove iterative algorithms are correct using a
simple inductive structure (base case, maintenance, termination).

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Searching Algorithms at a Glance

The goal of a search algorithm is to find the index of an element b in an array A. The
e!ciency of the search depends heavily on whether the array is sorted.

Feature Linear Search Binary Search

Idea Iterate through the array from
the beginning until the element is
found.

Compare the target with the mid-
dle element and discard half of the
remaining array in each step.

Requirement None. The array can be unsorted. The array must be sorted.

Runtime O(n) comparisons in the worst
case.

O(log n) comparisons.

Optimality Best possible for an unsorted ar-
ray.

Asymptotically optimal for
comparison-based search.

Key Takeaway: Searching is significantly faster on sorted data.

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Theoretical Lower Bound for Search: The Decision Tree Model

How can we prove that Binary Search, with its O(log n) runtime, is the best we can do for
searching in a sorted array?

Key Idea: The Decision Tree

Any comparison-based search algorithm can be modeled as a decision tree.

Each internal node represents a comparison (e.g., b < A[i]?).

Each leaf node represents a final outcome or result.

The worst-case number of comparisons for an algorithm is the height of its decision tree.

For an array A of size n, how many possible outcomes are there?

The element b could be at any of the n indices.

The element b might not be in the array at all.

This gives a total of n+ 1 possible outcomes.

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Deriving the Lower Bound

Theorem: Lower Bound for Comparison-Based Search

Any comparison-based search algorithm A on a sorted array of size n requires at least !(log n)
comparisons in the worst case.

Proof Sketch:
1 Every path from root to leaf is an execution path.

The tree’s height is the worst-case number of
comparisons.

2 A must distinguish between n+ 1 possible
outcomes, each a unique leaf.

3 A binary tree of height h has at most 2h leaves.
4 Since the number of leaves must be at least the

number of outcomes:

n + 1 → 2h =↑ log2(n + 1) → h

...

. . .

Number of leaves → 2h

h

n + 1 possible outcomes
must map to leaves

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Bubble Sort

Idea: In each pass, let the largest unsorted element ”bubble up” into its correct position.

Algorithm

BubbleSort(A)
n = A.length;
for j = 1 ... n-1 do:

// inner loop can be
// improved to n-j
for i = 1 ... n-1 do:

if A[i] > A[i+1] then
swap A[i] and A[i+1];

end if
end for

end for

Loop invariant (after j passes):

The largest j elements are in their final positions at the
right end, i.e., the su#x A[n ↑ j + 1..n] is sorted in asc.
order.

Comparisons:

n→1∑

j=1

n→1∑

i=1

1 =
n→1∑

j=1

(n ↑ 1) = (n ↑ 1)2 = $(n2)

∑n→1
j=1

∑n→j
i=1 1 =

∑n→1
j=1 (n ↑ j) =

∑n→1
j=1 j

Gauss
= $(n2)

Swaps:
O(n2) in the worst case.

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Selection Sort

Idea: In each pass, find the largest unsorted element and swap it into its correct final position
at the end of the array.

Algorithm

SelectionSort(A)
int n = A.length;
for j = 1 ... n-1:

// note: max op. is also a for-loop
k = idx of max(A[1...n-j]);
swap A[k] and A[n-j]

end for

Invariant I (j)

After j iterations of the outer loop, the last j
elements of the array contain the j largest
values in sorted order.

A[1 . . . n ↑ j] A[n ↑ j + 1 . . . n]
(unsorted) (sorted)

Comparisons:

n→1∑

j=1

(n ↑ 1↑ j) =
n(n ↑ 1)

2
= $(n2)

Swaps: O(n) (only once per iteration)

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Insertion Sort (with Binary Search for the Slot)

Idea: Build a sorted subarray at the beginning. Take the next element from the unsorted part
and insert it into its correct place within the already sorted part.

Algorithm

insertionSort(A)
int n = A.length;
for j = 1 ... n-1:
// bin. search for A[j+1] in A[1...j]
// to find insertion idx as a by-product

tmp = A[j+1]
shift A[k...j] to A[k+1...j+1]
A[k] = tmp

end for

Invariant I ↑(j)

After j iterations of the outer loop, the prefix of the
array A[1 . . . j] is sorted.

A[1 . . . j] A[j + 1 . . . n]
(sorted) (unsorted)

Comparisons:

n→1∑

j=1

↓log2 j↔ ↗ O(n log n)

Swaps:
∑n→1

j=1 O(j) = $(n2) (shifts dominate).

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Merge Sort

Idea: Divide and Conquer by splitting the array in half, sorting each half, and then merging the
two sorted halves back together.

Algorithm

MergeSort(A, left, right)
if left < right

middle = (left + right) / 2
MergeSort(A, left, middle)
MergeSort(A, middle+1, right)
Merge(A, left, middle, right)

end if

Merge invariant:

At any time, B holds the sorted merge of the
current prefixes of the two halves; after
merging, A[L..R] is sorted.

Time (comparisons/moves):

T (n) = 2T (n/2) + cn → O(n log n).

(see last week’s DnC Runtime Analysis)

Extra space: !(n) for the auxiliary array
during merge (MS does not act in-place)

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

https://th-kl.ch/teaching/ad_2025/week3/week3_after_class.pdf#%23page=24

Proving Correctness with Invariants

The analysis of an algorithm always includes a proof of correctness and runtime considerations.

One technique for iterative algorithms is to use a loop invariant, which allows us to make
statements about the state of some property with every iteration.

Proof by Induction with Loop Invariants

We must show three things about our invariant:
1 Initialization (Base Case): The invariant is true before the first iteration of the loop.
2 Maintenance (Inductive Step): If the invariant is true before an iteration (our I.H.), it

remains true after the iteration.
3 Termination: When the loop terminates, the invariant (combined with the loop’s

termination condition) guarantees the desired outcome.

Caution: The most critical part is choosing a precise and useful invariant!

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Correctness of Bubble Sort

Let’s prove the correctness of Bubble Sort using the invariant we discussed.

Bubble Sort Invariant

After j outer iterations, the su#x A[n ↑ j ..n ↑ 1] contains the j largest elements in increasing
order.

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Your Turn: Proving Bubble Sort Correct

Invariant I (j): After j outer iterations, the su#x A[n ↑ j ..n ↑ 1] contains the j largest
elements in increasing order.

Base Case: Let j = . The invariant holds because ...

I.H.: Assume now that ...

I.S.: Then in the (j+1)-st pass of the outer loop ...

Termination: The loop finishes after j = n ↑ 1 iterations. The whole array must be sorted
since ...

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Correctness of Bubble Sort

Goal: Upon termination, the array A is sorted in non-decreasing order.

Invariant I (j): After j outer iterations, the su!x A[n → j ..n → 1] contains the j largest
elements of A in non-decreasing order.

B.C. (j = 0): Before the loop, the su!x A[n..n → 1] is empty, so the invariant holds trivially.

I.H.: Assume I (j) holds for some 0 ↑ j < n → 1.

I.S.: The (j + 1)-th iteration scans the prefix A[0..n → j → 1] and moves its largest element to
A[n → j → 1]. By the I.H., A[n → j ..n → 1] already contains the j largest elements, sorted.
Therefore, the new su!x A[n → (j + 1)..n → 1] now holds the j + 1 largest elements in sorted
order. Thus, I (j + 1) holds.

Termination: The loop terminates when j = n → 1. By the invariant I (n → 1), the su!x
A[1..n → 1] contains the n → 1 largest elements, sorted. Consequently, the remaining element
A[0] must be the smallest. The entire array A is therefore sorted.

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Questions?

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Additional Practice

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Counting Loop Iterations - FS21

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

-

for j= 1 ... n do
adjust index range

for K = 1
... j - 1

- to ensure log is defined
= > t 0

while t Log (j - k)s)#)

f()

t ++ 1

Notice that we can easily turn the outer two loops into surs.

We also want to press the inner loop as a suc but notice that :ex
,

(i) the new verieble I is a exponential of 2 : (ii) the loop condition isn't immediately clear
.

To solve (i) ,
notice that C= 2

*
for some taIN

. To linerize the loop veriable ,

we apply the log and have to log(e) .

(#) Notice that for the log to be defined we onl iterate le up to j-1otherwise
the log is not defined .

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Then we reformulate : K+ 2 =jesk+ 2 tj()2+zj - k()t - yog(j - k)
,

nj- 1n j - 1 Lloghj-k)

=> A()=
reversed order ofsumm.

Greverse -the order

of summ.) (11)=o+jogn) i

-

⑪ (jlogj)

We again use the technique of splitting the suns in half:

j- 1j- 1

(1) El E log,- legis (1)jlog
~ ~

①Galgu①Glogn)⑪(jlog(j) ⑪(jlogj)

Theoretical Lower Bound for Sorting

Prove that the theoretical lower bound for any comparison-based sorting algorithm A is
!(n log n).

Proof.

Hint: Proceed analogously to the proof for search. Characterize the algorithm as a binary
decision trees, count the leaves and conclude the result.

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

=> there are at least 1: leaves in thetreeO

- of heighth has
Recall that : #leaves - 2" lateest 2"leeves (% => h log#leaves) = log (n !)

4 =(nlogn)=>: :

where the find inequality follows fromSDDDDB D (1)

log(n != log()= log()=((y)-
E- 1) . -- (1)nh-17.....A must distinguish between ! diff. Sortings (1) sometrichm

as before I -1

Quiz: Searching and Sorting

Claim True False

1. Bubble Sort algorithm always performs O(n2) comparisons. ↭ ↭
2. The invariant for Selection Sort is that after j passes, the first j elements
are sorted.

↭ ↭

3. In the worst case, Selection Sort performs O(n) swaps. ↭ ↭
4. Linear search can take O(log n) operations on some arrays. ↭ ↭

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Frame Title

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Peer Grading

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Peer-Grading Exercise

This week’s peer-grading exercise is Exercise 3.1

Each group grades the group below in the table I sent you (resp. the last one grades the first
one). Please send the other group your solution. If you don’t get their solution, please contact

me so I can send it to you.

Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

	Mini-Quiz
	Assignment
	Theory Recap
	Additional Practice
	Peer Grading

