Week 3

Searching & Sorting

Thorben Klabunde

www.th-kl.ch

13.10.2025

© Mini-Quiz

© Assignment

e Theory Recap

@ Additional Practice

© Peer Grading

Mini-Quiz

Assignment

Feedback Assignment 2

o Fibonacci Exercise: Remember to cover all required cases in the B.C. and, consequently,
also in the I.H. At the latest, when writing your proof and using the I.H. you should check
that all the assumed cases are covered.

o Limits: Generally well done but please double check your calculations for arithmetic
errors. When you apply a Theorem, get in the habit of briefly stating it.

@ Bounds: Well done! General feedback on proof structure: Try to keep your proofs clearly
structured (left to right, top to bottom) and guide the reader on how your statements are
connected.

(3) Prove that forn >3
1/n _
g (b)),
n n

You may use results from the earlier exercises.
You may use the following fact:

Let f,g : R* — R. Suppose that lim,,_, g(n) = oo and there exists some constant C € R
such that lim,,_,, f(n) = C. Then lim,,_, f(g(n)) = C.

Exercise 3.2 Substring counting.

Given a n-bit bitstring S[0..n — 1] (i.e. S[i] € {0,1} fori = 0,1,...,n — 1), and an integer k > 0, we
would like to count the number of nonempty contiguous substrings of S with exactly k ones. Assume
n > 2.

For example, when S = “0110” and k£ = 2, there are 4 such substrings: “011”, “11”, “110”, and
“0110”.

Ex. 3.2c)

(c) Consider an integer m € {0,1,...,n — 2}. Using PREFIXTABLE and SUFFIXTABLE, design an al-
gorithm SPANNING(m, k, S) that returns the number of substrings S[i..j] of S that have exactly k
ones and such that ¢ < m < j.

For example, if S = “0110”, k = 2, and m = 0, there exist exactly two such strings: “011” and
“0110”. Hence, SPANNING(m, k, S) = 2.

Describe the algorithm using pseudocode. Mention and justify the runtime of your algorithm (you
don’t need to provide a formal proof, but you should state your reasoning).

Hint: Each substring S[i..j] withi < m < j can be obtained by concatenating a string S[i..m] that
is a suffix of S[0..m] and a string S[m + 1..j] that is a prefix of S[m + 1..n — 1].

Ex. 3.2d)

(d)* Using sPANNING, design an algorithm with a runtime? of at most O(n log n) that counts the number
of nonempty substrings of a n-bit bitstring S with exactly k ones. (You can assume that n is a power
of two.)

Justify its runtime. You don’t need to provide a formal proof, but you should state your reasoning.

Hint: Use the recursive idea from the lecture.

Ex. 3.4a)

(a) Design an O(n) algorithm that computes the nth Fibonacci number f,, for n € N. Describe the

algorithm using pseudocode. Justify the runtime (you don’t need to provide a formal proof, but you
should state your reasoning).

Remark: As shown in part Exercise 2.2, f,, grows exponentially (e.g., at least as fast as Q(1.5™)). For
this exercise, you can assume that all addition operations can be performed in constant time.

Ex. 3.4b)

(b) Given an integer k£ > 2, design an algorithm that computes the largest Fibonacci number f,, such
that f,, < k. The algorithm should have complexity O(log k). Describe the algorithm using pseu-
docode and formally prove its runtime is O(log k).

Hint: Use the bound proved in Exercise 2.2.

Assignmen

Theory Recap

Theory Recap

Sorting Searching: The Big Picture

This week, the three key things you should learn are how to:

o Characterize the Search & Sort Problem
Sorting data makes searching much faster (O(n) — O(log n)). Different sorting
algorithms have fundamentally different runtimes (O(nlog n) vs. O(n?)).

@ Proving Theoretical Limits to discuss Optimality
Using decision trees, we proved a lower bound for an entire class of algorithms. For
comparison-based search, this limit is Q(log n), making Binary Search optimal.

o Prove Correctness using Loop Invariants
Loop invariants provide a formal way to prove iterative algorithms are correct using a
simple inductive structure (base case, maintenance, termination).

Theory Recap

Searching Algorithms at a Glance

The goal of a search algorithm is to find the index of an element b in an array A. The
efficiency of the search depends heavily on whether the array is sorted.

Feature Linear Search Binary Search

Idea Iterate through the array from Compare the target with the mid-
the beginning until the element is dle element and discard half of the
found. remaining array in each step.

Requirement None. The array can be unsorted. The array must be sorted.

Runtime O(n) comparisons in the worst O(logn) comparisons.
case.

Optimality Best possible for an unsorted ar- Asymptotically optimal for
ray. comparison-based search.

Key Takeaway: Searching is significantly faster on sorted data.

Theory Recap

Theoretical Lower Bound for Search: The Decision Tree Model

How can we prove that Binary Search, with its O(log n) runtime, is the best we can do for
searching in a sorted array?

Key Idea: The Decision Tree

Any comparison-based search algorithm can be modeled as a decision tree.
o Each internal node represents a comparison (e.g., b < A[i]?).
@ Each leaf node represents a final outcome or result.
The worst-case number of comparisons for an algorithm is the height of its decision tree.

For an array A of size n, how many possible outcomes are there?
@ The element b could be at any of the n indices.
@ The element b might not be in the array at all.

This gives a total of n + 1 possible outcomes.

Theory Recap

Deriving the Lower Bound

Theorem: Lower Bound for Comparison-Based Search

Any comparison-based search algorithm A on a sorted array of size n requires at least 2(logn)
comparisons in the worst case.

Proof Sketch: n+ 1 possible outcomes

© Every path from root to leaf is an execution path. must map to leaves

The tree's height is the worst-case number of
comparisons.

@ A must distinguish between n + 1 possible
outcomes, each a unique leaf.

@ A binary tree of height h has at most 2" leaves.

@ Therefore, the number of leaves must be at least

the number of outcomes: E E E E <

n+1<2" = logy,(n+1)<h

Number of leaves < 2h

Theory Recap

Bubble Sort

Idea: In each pass, let the largest unsorted element "bubble up” into its correct position.

Algorithm Loop invariant (after j passes):
The largest j elements are in their final positions at the
BubbleSort () right end, i.e., the suffix A[n —j + 1..n] is sorted in asc.
n = A.length;
for j =1 ... n-1 do: order
]

// inner loop can be
// improved to n-j
for i =1 ... n-1 do:
if A[i] > A[i+1] then
swap A[i] and A[i+1];
end if ¥ 1= (n—1)=(n—1)>=0(n?)
end for i i i
end for

Comparisons:

S 1= (=) =00 E ()
Swaps:
O(n?) in the worst case.

Theory Recap

Selection Sort

Idea: In each pass, find the largest unsorted element and swap it into its correct final position
at the end of the array.

Algorithm
After j iterations of the outer loop, the last j
SelectionSort (A) elements of the array contain the j largest
int n = A.length; | . ted d
for j =1 ... n-1: values In sorted order.
// note: maz op. is also a for-loop g .
k = idx of max(A[l...n-j1); A[l"'n_f] A[n_1+1"'n]
swap A[k] and A[n-j] (unsorted) (Sorted)
end for /

Comparisons:

Swaps: O(n) (only once per iteration)

Theory Recap

Insertion Sort (with Binary Search for the Slot)

Idea: Build a sorted subarray at the beginning. Take the next element from the unsorted part
and insert it into its correct place within the already sorted part.

Algorithm
After j iterations of the outer loop, the prefix of the
insertionSort(A) array A[1...j] is sorted.
int n = A.length;
for j =1 ... n-1: . g
// bin. search for A[j+1] in A[1...7] A[l . ‘./] AIJ +1... n]
// to find insertion idz as a by-product (sorted) (unsorted)
tmp = A[j+1]
shift Alk...j] to Alk+1...j+1] .]
Al - tmp Comparisons:
end for n—1
> llog,j1 < O(nlog n)
=1

Swaps: Z}';ll O(j) = ©(n?) (shifts dominate).

Theory Recap

Idea: Divide and Conquer by splitting the array in half, sorting each half, and then merging the
two sorted halves back together.

Merge invariant:

Algorithm
At any time, B holds the sorted merge of the
MergeSort (A, left, right) current prefixes of the two halves; after

if left < right o o
middle = (left + right) / 2 merging, A[L..R] is sorted.

MergeSort (A, left, middle)

MergeSort (A, middle+1, right) . .
Merge(A, left, middle, right) Time (comparisons/moves):

end if T(n) =2T(n/2) + cn = O(nlogn).

(see last week’s DnC Runtime Analysis)

Extra space: ©(n) for the auxiliary array
during merge (MS does not act in-place)

Theory Recap

Proving Correctness with Invariants

The analysis of an algorithm always includes a proof of correctness and runtime considerations.

One technique for iterative algorithms is to use a loop invariant, which allows us to make
statements about the state of some property with every iteration.

Proof by Induction with Loop Invariants
We must show three things about our invariant:
Q |Initialization (Base Case): The invariant is true before the first iteration of the loop.

@ Maintenance (Inductive Step): If the invariant is true before an iteration (our .H.), it
remains true after the iteration.

@ Termination: When the loop terminates, the invariant (combined with the loop's
termination condition) guarantees the desired outcome.

Caution: The most critical part is choosing a precise and useful invariant!

Theory Recap

Correctness of Bubble Sort

Let's prove the correctness of Bubble Sort using the invariant we discussed.

Bubble Sort Invariant
After j outer iterations, the suffix A[n — j..n — 1] contains the j largest elements in increasing
order.

Theory Recap

Your Turn: Proving Bubble Sort Correct

Invariant /(j): After j outer iterations, the suffix A[n — j..n — 1] contains the j largest
elements in increasing order.

Base Case: Let j = _. The invariant holds because ...

I.H.: Assume now that ...

I.S.: Then in the (j+1)-st pass of the outer loop ...

Termination: The loop finishes after j = n — 1 iterations. The whole array must be sorted
since ...

Theory Recap

Questions?

Theory Recap

Additional Practice

Additional Practice

Counting Loop lterations - FS21

Algorithm 2
for j=1,...,ndo
fork=1,...,ndo
£+ 1
while k+ ¢ < j do

f0
24

Additional Practice

Additional Practice

Theoretical Lower Bound for Sorting

Prove that the theoretical lower bound for any comparison-based sorting algorithm A is
Q(nlog n).

Proof.

Hint: Proceed analogously to the proof for search. Characterize the algorithm as a binary
decision trees, count the leaves and conclude the result.

Additional Practice

Additional Practice

Quiz: Searching and Sorting

Claim | True | False
1. Bubble Sort algorithm always performs O(n?) comparisons. ‘ 0 ‘ O
2. The invariant for Selection Sort is that after j passes, the first j elements g ‘ |
are sorted.

3. In the worst case, Selection Sort performs O(n) swaps. ‘ O ‘ O
4. Linear search can take O(log n) operations on some arrays. ‘ 0 ‘ O

Additional Practice

Frame Title

ii) Assume n > 10. For which of the following arrays does ITnsertionSort take time Q(n?)
(to sort the array in ascending order)?

(a) [2,1,3,4,5,...,n—2,n—1,n]
(b) [n,m—1,n—2,...,3,2,1]

(¢) For both

(d) For neither

Additional Practice

Peer Grading

Peer Grading

Peer-Grading Exercise

This week's peer-grading exercise is Exercise 3.1

Each group grades the group below in the table | sent you (resp. the last one grades the first
one). Please send the other group your solution. If you don't get their solution, please contact
me so | can send it to you.

Peer Grading

	Mini-Quiz
	Assignment
	Theory Recap
	Additional Practice
	Peer Grading

