Week 5

Quicksort, Heapsort & ADTs

Thorben Klabunde

www.th-kl.ch

20.10.2025

© Mini-Quiz

© Mini-Quiz

© Assignment

@ Theory Recap

© Additional Practice

@ Peer Grading

Mini-Quiz

0 Cl.: 562|n n) — @(eloln(n))'

Answer: False. We have 5e2"(") = 5(¢l"("))2 = 5n2 and e0"(") = (n())10 — p10 \We
check the limit:
5e 21n(n) 5n2

lim —— = lim — = lim — =0.
n—oo e10In(n) n—oo nl0 n—oo N8

@ Cl.: Suppose you have some algorithm A and let an increasing function T(n) be its
runtime on an input of size n. Assume you know that T(n) < T(n — 1)+ 100n and that
T(1) = 10. Then T(n) < O(n?).

Answer: True. Expanding out T(n) < T(n— 1)+ 100n <
T(n—2)+100(n — 1) +100n < --- < T(1) + 100(37_, /) = 10 4 10022 — O(n2).

@ Cl.: Every comparison-based sorting algorithm needs to perform at least Q(nlog(n))
swaps.

Answer: False. Selection sort only uses O(n) swaps.

© Suppose we apply insertion sort to the array A, =[n,n—1,...,2,1]. (Eg.,
As = [5,4,3,2,1]). Let s(n) be the number of swap operations that are performed before
the array is fully sorted (in ascending order).

Select one:
v a. s(n) > Q(n?)
At step j, we need to move A[j] = n— j+ 1 all the way to the first index via j — 1 many
swaps. So a total of 337 ,(j —1) = Q(n?) swaps.
b. s(n) < O(n)

© Which of the following sorting algorithms have the invariant that: after j steps, the first j
elements are sorted? (A step refers to one iteration of the outer loop for each sorting
algorithm).

Select one or more:
a. Merge sort
b. Bubble sort
Vv c. Insertion sort
From lecture, insertion sort has the invariant that keeps the first j indices are sorted after j

@ Cl.: Asymptotically (in ©-notation), merge sort, heap sort, and deterministic quick sort all
have the same worst-case runtime.

Answer: False. Deterministic quick sort has a worst-case runtime of ©(n?).

@ Cl.: Suppose all keys in a max-heap are unique. Then the node with the minimum key is
always the left-most leaf.

Answer: False. Consider the valid max-heap with root 3, left child 2, and right child 1.
The minimum key (1) is the right leaf, not the left-most.

Mini-Quiz 4

Consider the following max-heap,

After executing one ExtractMax operation, what is the correct max-heap?

Assignment

Ex. 4.4a)

Exercise 4.4 Searching for the summit (1 point).

Suppose we are given an array A[l ... n] with n unique integers that satisfies the following property.
There exists an integer k € [1,n], called the summit index, such that A[1...k] is a strictly increasing
array and A[k...n] is a strictly decreasing array. We say an array is valid is if satisfies the above
properties.

(a) Provide an algorithm that find this k with worst-case running time O(log n). Give the pseudocode
and give an argument why its worst-case running time is O(log n).

Note: Be careful about edge-cases! It could happen that k = 1 or k = n, and you don’t want to peek
outside of array bounds without taking due care.

Ex. 4.4a)

Algorithm 2 Find the summit

function FINDSUMMITINDEX(T', %, j)
m <+ |(i+7)/2]

if j = i then
return ¢

if T'[m + 1] < T[m)] then > m is right of the summit (or is the summit)
return FINDSUMMITINDEX (T, 4,) > keep searching in the left half

else > m is strictly left of the summit
return FINDSUMMITINDEX(T, m + 1, j) > keep searching in the right half

Input: Valid array 7" of length n with unique elements
Output: FINDSUMMITINDEX(T', 1,)

Ce€ Aln) § Ha 0oesé- ca fmahhe o0 an attay of (egth a.

Notice det & Ge alove pseadocoda (€ balds: ACN) € ACR)+ C | For sore Ce .
To apply < faster Thaoret v RUVE e axpredsion a3 A@)E (- AC]) + <n®
De om)bﬁ/-& [T 0t loga = logi=0=5 and ofain A(w) éo((o&o),

Ex. 4.4b)

(b) Given an integer z, provide an algorithm with running time O(logn) that checks if = appears in
the (valid) array or not. Describe the algorithm either in words or pseudocode and argue about its
worst-case running time.

Ex. 4.4b)

Algorithm 3 Search in a valid array

Input: Valid integer array T of length n with unique elements, integer
k «+ rinDSummITINDEX(T, 1, 1)
ky < BST(T[L..k],z) > search in array T'[1..k], sorted in ascending order

ko + BSH(T[k + 1..n),z) > search in array T'[k + 1..n), sorted in descending order
Output: k; or ks

Ex. 4.5a) - Counting Function Calls

Algorithm 4
i1
while 7 < n do
jei i
while 29 < n do Nd<n = ¢ L(o&(rﬂJ
f0
j—j+1
i 1+1
L] n
Z— Z I = Z Max (o, L‘°S(“)J -0+ () (m&& [rax o()oeﬁcr {0 3\‘6\& 0ot (e Capy
= E =0 vhak ©e ANeC Sk i3 thﬁ)
I
= Z_ (L/°S(n).‘ ={ = (> (lenua on€ iEfatons Bha qo Stachon
= @l occats Cetpéy anes gur))
Liny(n)y
= / | (reverse gam & ads¢ indacey)
=
— U‘J(“)J (_/o‘S(A)J-¢ (_ @ ((ad(‘\)a)

Q

Ex. 4.5b) - Counting Function Calls

Algorithm 5
function A(n)
i< 0
while i < n? do
jn
while j > 0 do
£0
10
Jjei—-1
i i+1
k3]
for/=0...3do
if k£ > 0 then
A(k)
A(k)

You may assume that the function 7' : N — R denoting the number of calls of the algorithm to f
is increasing.

Ex. 4.5b) - Counting Function Calls

Gt TN §e He Gl fumbs oF calls €0 S . Potica Jean He piendlocode Haé:
T(O=2 aad For n2Q e et e MRcatuCe !

- n
Ta)y= 5 2 & + 8T(4)

i=o j=I

= a2 () + 2T(2)

= 3TE) + 4ad

Ai’("’(ﬁ"(\& e flostes Thanretn it a= §,6=3 aadk =L e Sk Ta) = @C(\"(os(ﬂ)

Theory Recap

Theory Recap

This Week's Big Picture

This week, we finished sorting and introduced the concept of Abstract Data-Types (ADTs) and
first data structures. Key Takeaways:
o Efficient Sorting and Trade-Offs
Quicksort uses a clever partitioning scheme, while Heapsort introduces a new data
structure, the heap, to sort efficiently in-place.

e Familiarization with Tree-Based Data-Structures
You should become gain intuition for tree-based data structures. In particular you should
feel comfortable describing and reasoning about the properties of tree-based
data-structures.

e Abstract Data Types (ADTs)
You should understand the concept of separating an interface (an ADT) from its
implementation (a data-structure) and understand the trade-offs involved for specific
ADTs (this week: lists).

Theory Recap

Sorting Algorithms: A Summary

| Algorithm | Comparisons | Swaps | Extra Space | Locality
BubbleSort Oo(n?) o(n?) O(1) good
SelectionSort O(n?) O(n) O(1) good
InsertionSort O(nlog n) o(n?) O(1) good
Mergesort O(nlog n) O(nlog n) O(n) good

Theory Recap

Recap: Binary Tree Properties

{alancedt hnbalenceel
leved #nodes i
o a° (@) § o
ZhN 1 /N
L2 R 9 heigd | o o
a 2% /o\ 6 6 o |=uege) s N hejgt = 00
= i N
3-h 28 8 O o | < B
|- —— N} 3
ﬁé:(H#acotes # lagves € O O/\o
Z Z_Q.: _ qul - ‘

=0

De duueﬁ% 0t & esace onr Eraa-besedd data s&actures are Lelenced (L\F % @ dqd(.m)
Lo exfure. Lefler PWT&U‘

Theory Recap

Theoretical Lower Bound for Comparison-Based Sorting

How can we prove that O(nlog n) is the best possible runtime for sorting?

Key Idea: The Decision Tree for Comparison-Based Sorting

Any comparison-based sorting algorithm can be modeled as a decision tree.
e Each internal node represents a comparison (e.g., A[i] < A[j]?).
@ Each leaf node represents one of the possible sorted outcomes.

The worst-case number of comparisons is the height h of the tree.

For an input array A of size n with distinct elements, how many possible sorted outcomes
(permutations) are there?

@ There are n! possible permutations of the input array. The algorithm must be able to
distinguish between all of them.

@ Each of these n! outcomes must correspond to at least one leaf in the decision tree.

Theory Recap

Deriving the Lower Bound for Sorting

Theorem: Lower Bound for Comparison-Based Sorting

Any comparison-based sorting algorithm requires at least £2(nlogn) comparisons in the worst
case.

Proof Sketch:

@ The algorithm must distinguish between n! possible
permutations, so the decision tree must have at
least n! leaves.

@ A binary tree of height h has at most 2" leaves.

© Therefore, the number of leaves must be at least the
Perm 1 Perm 2 Perm k
number of outcomes: n! < 2" = h > log,(n!) | || |

@ Using the property that log(n!) = ©(nlog n), we
get:

#leaves > nl
h > Q(nlog n)

The worst-case runtime is at least logarithmic in the
number of outcomes.

Theory Recap

Sorting in O(n) - A Contradiction?

No! The Q(nlog n) bound is not violated.

That theorem only applies to comparison-based sorting algorithms. We can achieve O(n) if
we make assumptions about the data and use its value directly.

Example: Counting Sort
o Key Assumption: The n input elements are integers in a known, finite range, e.g., [0, K].

@ Core Idea: We don't sort the elements at all. We just count the occurrences of each
element and then rebuild the array.

e How it works:
© Create a "count” array C of size k + 1, initialized to zeros.
@ Count (O(n)): lterate the input A. For each element x, increment its counter: C[x]+ = 1.
© Rebuild (O(n + k)): lterate C from i = 0 to k. For each i, add the value i to the output
array C[i] times.

@ Runtime: O(n + k)

Theory Recap

Idea: A "divide and conquer” algorithm where the main work happens in the dividing step, not
the combining step.

@ Partition: Pick an element, the pivot. Rearrange the array such that all elements smaller
than the pivot come before it, while all elements greater come after it.

= Invariant: After the partitioning, the pivot is in its final sorted position.

@ Conquer: Recursively apply Quicksort to the sub-array of smaller elements and the
sub-array of larger elements.

© Combine: No work needed! The array is sorted once the recursive calls return.

Theory Recap

Idea: A "divide and conquer” algorithm where the main work happens in the dividing step,
not the combining step.
@ Partition: Pick an element, the pivot. Rearrange the array such that all elements smaller
than the pivot come before it, while all elements greater come after it. After this
partitioning, the pivot is in its final sorted position.

@ Conquer: Recursively apply Quicksort to the sub-array of smaller elements and the
sub-array of larger elements.

© Combine: No work needed! The array is sorted once the recursive calls return.

void quicksort(int 1, int r, int[] arr) { int partition(int 1, int r, int p, int[] arr) {
if (1>=r) return; int i = 1; int j = r-1;
int p = arr[r]; while(true){
while(i < r && arr[i] <= p) i++;
int p_idx = partition(l, r, p, arr); while(j > i && arr[j]l > p) j——;
quicksort(l, p_idx-1, arr); if (i>=j) break;
quicksort(p_idx+1, r, arr); swap(i, j, arr);
} }
swap(i, r, arr);
return i;
}

Theory Recap

Quicksort: Partitioning Analysis

Runtime Analysis

Note: The runtime depends on the pivot selection!
o Best/Average Case: The pivot splits the array into two roughly equal halves.
o Recurrence: T(n) =2T(n/2)+ ©(n)
o Solution: T(n) = O(nlogn)

e Worst Case: The pivot is always the smallest or largest element (e.g., when the array is
already sorted and you pick the last element as pivot).

o Recurrence: T(n) = T(n—1)+ ©(n)
o Solution: T(n) = O(n?)

Note: The worst case is rare, especially if the pivot is chosen randomly. You will prove next
term in Algorithms and Probability that for a randomly chosen index, QuickSort has an
expected runtime of O(nlog n)

Theory Recap

The Max-Heap Data Structure

New Approach: Use a special data structure that keeps elements in order to find /
extract the maximum element efficiently.

A Max-Heap is a binary tree that is:

@ Complete: All levels are full, except possibly the last, which is filled from left to right.

@ Satisfies the Max-Heap Property: The key of any node is greater than or equal to the
keys of its children.

Key Consequence: The largest element is always at the root of the tree!

Key Properties - Since a Heap is a @
complete binary tree:

o Depth < |log(n)]
° #eteaves §Og[n/2] @ @
@ O @&

Theory Recap

Your-Turn: Max-Heap Operations

Lak <!
PN
(b) Consider the following max-heap: / 23 ;Q S-\
22 (2 1« (3
SN NN N
1 S ¢§ > 6 3 1 8
§&-: 27
/ N
273 2&‘
i f\L 7
raw € max-neaj er ‘0 BXtraci ax operations.]‘ {q (;
Draw th heap after two ExtractMax operations. PN /\ /N /
3 s ¢ (O 6 3 d

Theory Recap

Implementing a Max-Heap using Arrays

Array Representation: A heap is typically stored in an array. For a node at index k (using
1-based indexing):

o Its parent is at index | k/2].
@ Its left child is at 2k.
@ lts right child is at 2k + 1.

/4('¢c.7 BLYR) Tleae vied
S —
2 3 9 s & 7 8 2 3
/
4 s ¢ =
s

Theory Recap

HeapSort proceeds in two phases:
© Build-Max-Heap: First, convert the unsorted input array into a max-heap (or start with
an empty heap and add elements)

@ Sort: Repeatedly perform the following steps:
@ Swap the maximum element A[1] with the last element of the current heap, A[/].
@ Reduce heap size by one. The swapped element is now in its final sorted position.

© Restore Heap Property: The new root may violate the heap property. Fix by letting the
element "sink” to its correct position.

RestoreHeapCondition (Sift-Down):

Heapsort(A)
n = A.length @
for i = floor(n/2)..1 do: // 1. Build the initial maz-heap
RestoreHeapCondition(A, i, n)
for i = n..2 do: // 2. Eztract elements one by one @ @
swap(A[1], A[il)

RestoreHeapCondition(A, 1, i-1) . . i
P Swap with largest child until restored.

Theory Recap

Heapsort: Analysis Properties

Runtime Analysis
@ Build-Heap: The first loop runs = n/2 times. Each ‘RestoreHeapCondition* call takes at
most O(log n) time

= O(nlog n) in total (a tighter analysis shows it's actually O(n)).

@ Sorting Phase: The second loop runs n — 1 times. The i-th iteration takes O(log i) for
the ‘RestoreHeapCondition‘ call. The total time is Y., O(log i) = O(nlogn).

Additionally:
e Space Complexity: O(1) extra space for in-place sorting.

o Locality: Not very good. Accessing parents and children can involve large jumps in
memory, which is not cache-friendly.

Theory Recap

Abstract Data Types (ADT)

A fundamental concept in computer science is the separation of interface and
implementation.

Abstract Data Type (ADT)

An ADT is a model for a data type. It specifies:

o A set of objects (i.e., the type of data being stored).
@ A set of operations that can be performed on these objects.
An ADT defines what can be done, but not how it is done.

A Data Structure is a concrete implementation of an ADT.

Example: The List ADT
@ Objects: A collection of items in a fixed sequence.
e Operations (a selection):

o ‘insert(k, L)": Add an item with key ‘k' to the end of list ‘L".
o ‘get(i, L)": Return the i-th item in ‘L".
o ‘delete(o, L)': Remove object ‘o’ from list ‘L'.

Theory Recap

Data Structures for the List ADT

The choice of data structure affects the performance of the ADT's operations. Let's compare
three common implementations for the List ADT.

Operation Array Singly Linked List Doubly Linked List
get(i) 0(1) o(i) 0(i)
insert (at end) 0o(1) O(n)* 0(1)
insertAfter(o, k) O(n) 0(1) o(1)
delete(o) O(n) O(n) 0(1)

Assumes a pointer/index to object ‘o’ is given for ‘insertAfter' and ‘delete’.
*O(1) if we keep a pointer to the tail.

Key Trade-off: Arrays provide fast random access (get(i)), while linked lists provide fast
insertions and deletions in the middle.

Theory Recap

Questions?

Theory Recap

Additional Practice

Additional Practice

Induction - HS19

d) Induction: Prove by mathematical induction that for any positive integer n,

| 1
sy,
k=1
Ny
el VnéW"'(kZE % = %) IS Thendor a4l i€ Lolds:
=(n-+¢ A
~ (S) e
‘?L De F(ocu.o(&3 (ndaction on A. é Vi ([‘:Z(Lo~ VTRES
(T.4.
o L L (
R.C. Le€ n= [endl achica: é =1 <d-7, < (,’2——%\- + O

L - - @* A B .
DLLMOK'&L(Z.C. e(lQ . .;l O e f\(r_~‘l)»"~ l(&md Jractions s cammon o‘u"a/w(u"c(‘)

Nole | Vel
—(0%+n+() & = (n%4n)

\

9 - Atiaacl-a ¢ - a%+n
A (n 0> o x>

I;I-f_. Assame ﬁﬁid/i/@\ /'nzju.a(f% Lolf5 Joc soma
nEeNT.

_ ala+1) = 92- |
AlnE (1) B

Additional Practice

Peer Grading

Peer Grading

Peer-Grading Exercise

This week's peer-grading exercise is Exercise 4.4

Each group grades the group below in the table | sent you (resp. the last one grades the first
one). Please send the other group your solution. If you don't get their solution, please contact
me so | can send it to you.

Peer Grading

	Mini-Quiz
	Mini-Quiz
	Assignment
	Theory Recap
	Additional Practice
	Peer Grading

