
Week 5
Quicksort, Heapsort & ADTs

Thorben Klabunde

www.th-kl.ch

20.10.2025

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Agenda

1 Mini-Quiz

2 Mini-Quiz

3 Assignment

4 Theory Recap

5 Additional Practice

6 Peer Grading

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Mini-Quiz

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Assignment

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Ex. 4.4a)

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Ex. 4.4b)

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Ex. 4.5a) - Counting Function Calls

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Ex. 4.5b) - Counting Function Calls

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Ex. 4.5b) - Counting Function Calls

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Theory Recap

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

This Week’s Big Picture

This week, we finished sorting and introduced the concept of Abstract Data-Types (ADTs) and

first data structures. Key Takeaways:

E!cient Sorting and Trade-O”s
Quicksort uses a clever partitioning scheme, while Heapsort introduces a new data

structure, the heap, to sort e!ciently in-place.

Familiarization with Tree-Based Data-Structures
You should become gain intuition for tree-based data structures. In particular you should

feel comfortable describing and reasoning about the properties of tree-based

data-structures.

Abstract Data Types (ADTs)
You should understand the concept of separating an interface (an ADT) from its

implementation (a data-structure) and understand the trade-o”s involved for specific

ADTs (this week: lists).

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Sorting Algorithms: A Summary

Algorithm Comparisons Swaps Extra Space Locality

BubbleSort O(n
2
) O(n

2
) O(1) good

SelectionSort O(n
2
) O(n) O(1) good

InsertionSort O(n
2
) O(n log n) O(1) good

Mergesort O(n log n) O(n log n) O(n) good

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Recap: Binary Tree Properties

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

undelencedDelanced
-

#nodeslevel

O

·
leaves

totalnodes
OO

X

Wa generally went to ensure our trea-based data structures are balanced (up to a degree
to ensure better properties-

Theoretical Lower Bound for Comparison-Based Sorting

How can we prove that O(n log n) is the best possible runtime for sorting?

Key Idea: The Decision Tree for Comparison-Based Sorting

Any comparison-based sorting algorithm can be modeled as a decision tree.

Each internal node represents a comparison (e.g., A[i] < A[j]?).

Each leaf node represents one of the possible sorted outcomes.

The worst-case number of comparisons is the height h of the tree.

For an input array A of size n with distinct elements, how many possible sorted outcomes

(permutations) are there?

There are n! possible permutations of the input array. The algorithm must be able to

distinguish between all of them.

Each of these n! outcomes must correspond to at least one leaf in the decision tree.

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Deriving the Lower Bound for Sorting

Theorem: Lower Bound for Comparison-Based Sorting

Any comparison-based sorting algorithm requires at least #(n log n) comparisons in the worst

case.

Proof Sketch:
1 The algorithm must distinguish between n! possible

permutations, so the decision tree must have at

least n! leaves.

2 A binary tree of height h has at most 2h leaves.

3 Therefore, the number of leaves must be at least the

number of outcomes: n! → 2
h

=↑ h ↓ log2(n!)

4 Using the property that log(n!) = #(n log n), we

get:

h ↓ $(n log n)

The worst-case runtime is at least logarithmic in the

number of outcomes.

.

.

.

Perm 1 Perm 2 . . . Perm k

#leaves ↓ n!

h

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Sorting in O(n) - A Contradiction?

No! The $(n log n) bound is not violated.

That theorem only applies to comparison-based sorting algorithms. We can achieve O(n) if

we make assumptions about the data and use its value directly.

Example: Counting Sort

Key Assumption: The n input elements are integers in a known, finite range, e.g., [0, k].

Core Idea: We don’t sort the elements at all. We just count the occurrences of each

element and then rebuild the array.

How it works:
1 Create a ”count” array C of size k + 1, initialized to zeros.

2 Count (O(n)): Iterate the input A. For each element x , increment its counter: C[x]+ = 1.

3 Rebuild (O(n + k)): Iterate C from i = 0 to k. For each i , add the value i to the output

array C [i] times.

Runtime: O(n+ k)

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Quicksort

Idea: A ”divide and conquer” algorithm where the main work happens in the dividing step, not

the combining step.

1 Partition: Pick an element, the pivot. Rearrange the array such that all elements smaller

than the pivot come before it, while all elements greater come after it.

=↑ Invariant: After the partitioning, the pivot is in its final sorted position.

2 Conquer: Recursively apply Quicksort to the sub-array of smaller elements and the

sub-array of larger elements.

3 Combine: No work needed! The array is sorted once the recursive calls return.

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Quicksort

Idea: A ”divide and conquer” algorithm where the main work happens in the dividing step,
not the combining step.

1 Partition: Pick an element, the pivot. Rearrange the array such that all elements smaller

than the pivot come before it, while all elements greater come after it. After this

partitioning, the pivot is in its final sorted position.

2 Conquer: Recursively apply Quicksort to the sub-array of smaller elements and the

sub-array of larger elements.

3 Combine: No work needed! The array is sorted once the recursive calls return.

void quicksort(int l, int r, int[] arr) {

if (l>=r) return;

int p = arr[r];

int p_idx = partition(l, r, p, arr);

quicksort(l, p_idx-1, arr);

quicksort(p_idx+1, r, arr);

}

int partition(int l, int r, int p, int[] arr) {

int i = l; int j = r-1;

while(true){

while(i < r && arr[i] <= p) i++;

while(j > i && arr[j] > p) j--;

if (i>=j) break;

swap(i, j, arr);

}

swap(i, r, arr);

return i;

}

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Quicksort: Partitioning Analysis

Runtime Analysis

Note: The runtime depends on the pivot selection!

Best/Average Case: The pivot splits the array into two roughly equal halves.

Recurrence: T (n) = 2T (n/2) +!(n)

Solution: T (n) = O(n log n)

Worst Case: The pivot is always the smallest or largest element (e.g., when the array is

already sorted and you pick the last element as pivot).

Recurrence: T (n) = T (n → 1) +!(n)

Solution: T (n) = O(n2
)

Note: The worst case is rare, especially if the pivot is chosen randomly. You will prove next

term in Algorithms and Probability that for a randomly chosen index, QuickSort has an

expected runtime of O(n log n)

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

The Max-Heap Data Structure

New Approach: Use a special data structure that keeps elements in order to find /

extract the maximum element e!ciently.

A Max-Heap is a binary tree that is:

1 Complete: All levels are full, except possibly the last, which is filled from left to right.

2 Satisfies the Max-Heap Property: The key of any node is greater than or equal to the

keys of its children.

Key Consequence: The largest element is always at the root of the tree!

Key Properties - Since a Heap is a
complete binary tree:

Depth → ↔log(n)↗
Leaves → ↘n/2≃

87

72

10 8

85

80 3

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Your-Turn: Max-Heap Operations

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Implementing a Max-Heap using Arrays

Array Representation: A heap is typically stored in an array. For a node at index k (using

1-based indexing):

Its parent is at index →k/2↑.
Its left child is at 2k .

Its right child is at 2k + 1.

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Tree viewArray view

-> I

I 234567 g 23

-

4 756

g

Heapsort

HeapSort proceeds in two phases:
1 Build-Max-Heap: First, convert the unsorted input array into a max-heap (or start with

an empty heap and add elements)

2 Sort: Repeatedly perform the following steps:

1 Swap the maximum element A[1] with the last element of the current heap, A[i].

2 Reduce heap size by one. The swapped element is now in its final sorted position.

3 Restore Heap Property: The new root may violate the heap property. Fix by letting the

element ”sink” to its correct position.

Heapsort(A)

n = A.length

for i = floor(n/2)..1 do: // 1. Build the initial max-heap
RestoreHeapCondition(A, i, n)

for i = n..2 do: // 2. Extract elements one by one
swap(A[1], A[i])

RestoreHeapCondition(A, 1, i-1)

RestoreHeapCondition (Sift-Down):

70

72 85

Swap with largest child until restored.

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Heapsort: Analysis Properties

Runtime Analysis

Build-Heap: The first loop runs ⇐ n/2 times. Each ‘RestoreHeapCondition‘ call takes at

most O(log n) time

=↑ O(n log n) in total (a tighter analysis shows it’s actually O(n)).

Sorting Phase: The second loop runs n ⇒ 1 times. The i-th iteration takes O(log i) for

the ‘RestoreHeapCondition‘ call. The total time is
∑n

i=2 O(log i) = O(n log n).

Additionally:

Space Complexity: O(1) extra space for in-place sorting.

Locality: Not very good. Accessing parents and children can involve large jumps in

memory, which is not cache-friendly.

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Abstract Data Types (ADT)

A fundamental concept in computer science is the separation of interface and
implementation.

Abstract Data Type (ADT)

An ADT is a model for a data type. It specifies:

A set of objects (i.e., the type of data being stored).

A set of operations that can be performed on these objects.

An ADT defines what can be done, but not how it is done.

A Data Structure is a concrete implementation of an ADT.

Example: The List ADT

Objects: A collection of items in a fixed sequence.

Operations (a selection):
‘insert(k, L)‘: Add an item with key ‘k‘ to the end of list ‘L‘.

‘get(i, L)‘: Return the i-th item in ‘L‘.

‘delete(o, L)‘: Remove object ‘o‘ from list ‘L‘.

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Data Structures for the List ADT

The choice of data structure a”ects the performance of the ADT’s operations. Let’s compare

three common implementations for the List ADT.

Operation Array Singly Linked List Doubly Linked List

get(i) O(1) O(i) O(i)

insert (at end) O(1) O(n)* O(1)

insertAfter(o, k) O(n) O(1) O(1)

delete(o) O(n) O(n) O(1)

Assumes a pointer/index to object ‘o‘ is given for ‘insertAfter‘ and ‘delete‘.
*O(1) if we keep a pointer to the tail.

Key Trade-o”: Arrays provide fast random access (get(i)), while linked lists provide fast

insertions and deletions in the middle.

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Questions?

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Additional Practice

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Max-Heap Proof

Recall that a max-heap is a complete binary tree that satisfies the max-heap property:

For any node P with a child C , it must be that key(P) ↓ key(C).

Let T be a max-heap. Prove by induction that for any node x in T , the key of x is greater

than or equal to the key of any other node y in the subtree rooted at x .

1 B.C.:

2 I.H.:

3 I.S.:

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Induction - HS19

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Peer Grading

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

Peer-Grading Exercise

This week’s peer-grading exercise is Exercise 4.4

Each group grades the group below in the table I sent you (resp. the last one grades the first

one). Please send the other group your solution. If you don’t get their solution, please contact

me so I can send it to you.

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer Grading

	Mini-Quiz
	Mini-Quiz
	Assignment
	Theory Recap
	Additional Practice
	Peer Grading

