Week 5

Quicksort, Heapsort & ADTs

Thorben Klabunde www.th-kl.ch

20.10.2025

Agenda

- Mini-Quiz
- Mini-Quiz
- Assignment
- Theory Recap
- 6 Additional Practice
- 6 Peer Grading

Mini-Quiz

Ex. 4.4a)

Exercise 4.4 Searching for the summit (1 point).

Suppose we are given an array $A[1\dots n]$ with n unique integers that satisfies the following property. There exists an integer $k\in [1,n]$, called the *summit index*, such that $A[1\dots k]$ is a strictly increasing array and $A[k\dots n]$ is a strictly decreasing array. We say an array is valid is if satisfies the above properties.

(a) Provide an algorithm that find this k with worst-case running time $O(\log n)$. Give the pseudocode and give an argument why its worst-case running time is $O(\log n)$.

Note: Be careful about edge-cases! It could happen that k = 1 or k = n, and you don't want to peek outside of array bounds without taking due care.

Ex. 4.4b)

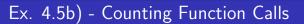
(b) Given an integer x, provide an algorithm with running time $O(\log n)$ that checks if x appears in the (valid) array or not. Describe the algorithm either in words or pseudocode and argue about its worst-case running time.

Ex. 4.5a) - Counting Function Calls

Ex. 4.5b) - Counting Function Calls

Algorithm 5 function A(n) $i \leftarrow 0$ while $i < n^2$ do $j \leftarrow n$ while j > 0 do f() $j \leftarrow j-1$ $i \leftarrow i + 1$ $k \leftarrow \lfloor \frac{n}{2} \rfloor$ for $l = 0 \dots 3$ do if k > 0 then A(k)A(k)

You may assume that the function $T:\mathbb{N}\to\mathbb{R}^+$ denoting the number of calls of the algorithm to f is increasing.



This Week's Big Picture

This week, we finished sorting and introduced the concept of Abstract Data-Types (ADTs) and first data structures. Key Takeaways:

Efficient Sorting and Trade-Offs

Quicksort uses a clever partitioning scheme, while Heapsort introduces a new data structure, the heap, to sort efficiently in-place.

Familiarization with Tree-Based Data-Structures

You should become gain intuition for tree-based data structures. In particular you should feel comfortable describing and reasoning about the properties of tree-based data-structures.

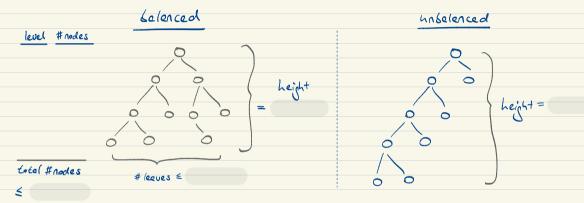
Abstract Data Types (ADTs)

You should understand the concept of separating an interface (an ADT) from its implementation (a data-structure) and understand the trade-offs involved for specific ADTs (this week: lists).

Sorting Algorithms: A Summary

Algorithm	Comparisons	Swaps	Extra Space	Locality
BubbleSort	$O(n^2)$	$O(n^2)$	O(1)	good
SelectionSort	$O(n^2)$	O(n)	O(1)	good
InsertionSort	$O(n^2)$	$O(n \log n)$	O(1)	good
Mergesort	$O(n \log n)$	$O(n \log n)$	O(n)	good

Recap: Binary Tree Properties



De generally went to ensure our Erre-based data structures are belenced (up to a degree) to ensure better properties.

Theoretical Lower Bound for Comparison-Based Sorting

How can we prove that $O(n \log n)$ is the best possible runtime for sorting?

Key Idea: The Decision Tree for Comparison-Based Sorting

Any comparison-based sorting algorithm can be modeled as a decision tree.

- Each **internal node** represents a comparison (e.g., A[i] < A[j]?).
- Each leaf node represents one of the possible sorted outcomes.

The worst-case number of comparisons is the height h of the tree.

For an input array A of size n with distinct elements, how many possible sorted outcomes (permutations) are there?

- There are **n**! possible permutations of the input array. The algorithm must be able to distinguish between all of them.
- Each of these n! outcomes must correspond to at least one leaf in the decision tree.

Deriving the Lower Bound for Sorting

Theorem: Lower Bound for Comparison-Based Sorting

Any comparison-based sorting algorithm requires at least $\Omega(n \log n)$ comparisons in the worst case.

Proof Sketch:

- The algorithm must distinguish between n! possible permutations, so the decision tree must have at least n! leaves.
- A binary tree of height h has at most 2^h leaves.
- **③** Therefore, the number of leaves must be at least the number of outcomes: $n! \le 2^h \implies h \ge \log_2(n!)$
- Using the property that $\log(n!) = \Theta(n \log n)$, we get:

$$h \ge \Omega(n \log n)$$

The worst-case runtime is at least logarithmic in the number of outcomes

:

Perm 1

Perm 2

Perm k

#leaves $\geq n!$

Sorting in O(n) - A Contradiction?

No! The $\Omega(n \log n)$ bound is not violated.

That theorem **only** applies to **comparison-based sorting** algorithms. We can achieve O(n) if we **make assumptions** about the data and use its *value* directly.

Example: Counting Sort

- Key Assumption: The n input elements are integers in a known, finite range, e.g., [0,k].
- **Core Idea:** We don't sort the elements at all. We just *count* the occurrences of each element and then rebuild the array.
- How it works:
 - Create a "count" array C of size k + 1, initialized to zeros.
 - **② Count (**O(n)**):** Iterate the input A. For each element x, increment its counter: C[x] + = 1.
 - **§ Rebuild (**O(n+k)**):** Iterate C from i=0 to k. For each i, add the value i to the output array C[i] times.
- Runtime: O(n + k)

Quicksort

Idea: A "divide and conquer" algorithm where the main work happens in the dividing step, not the combining step.

- **Partition:** Pick an element, the **pivot**. Rearrange the array such that all elements smaller than the pivot come before it, while all elements greater come after it.
 - ⇒ **Invariant:** After the partitioning, the pivot is in its final sorted position.
- Conquer: Recursively apply Quicksort to the sub-array of smaller elements and the sub-array of larger elements.
- **Ombine:** No work needed! The array is sorted once the recursive calls return.

Quicksort

Idea: A "divide and conquer" algorithm where the **main work happens in the dividing step**, not the combining step.

- Partition: Pick an element, the pivot. Rearrange the array such that all elements smaller than the pivot come before it, while all elements greater come after it. After this partitioning, the pivot is in its final sorted position.
- Conquer: Recursively apply Quicksort to the sub-array of smaller elements and the sub-array of larger elements.
- **Ombine:** No work needed! The array is sorted once the recursive calls return.

```
void quicksort(int 1, int r, int[] arr) {
    if (1>=r) return;
    int p = arr[r];
    int p = arr[r];
    int p_idx = partition(1, r, p, arr);
    quicksort(1, p_idx-1, arr);
    quicksort(p_idx+1, r, arr);
}

swap(i, r, arr);
    return i;

int partition(int 1, int r, int p, int[] arr) {
    int i = 1; int j = r-1;
    while(true) {
        while(i < r && arr[i] <= p) i++;
        while(j > i && arr[j] > p) j--;
        if (i>=j) break;
        swap(i, j, arr);
    }
}
```

Quicksort: Partitioning Analysis

Runtime Analysis

Note: The runtime depends on the pivot selection!

- Best/Average Case: The pivot splits the array into two roughly equal halves.
 - Recurrence: $T(n) = 2T(n/2) + \Theta(n)$
 - Solution: $T(n) = O(n \log n)$
- Worst Case: The pivot is always the smallest or largest element (e.g., when the array is already sorted and you pick the last element as pivot).
 - Recurrence: $T(n) = T(n-1) + \Theta(n)$
 - Solution: $T(n) = O(n^2)$

Note: The worst case is rare, especially if the pivot is chosen randomly. You will prove next term in Algorithms and Probability that for a randomly chosen index, QuickSort has an expected runtime of $O(n \log n)$

The Max-Heap Data Structure

New Approach: Use a **special data structure** that **keeps elements in order** to find / extract the maximum element efficiently.

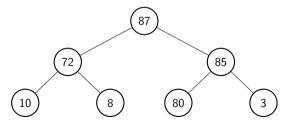
A Max-Heap is a binary tree that is:

- **Omplete:** All levels are full, except possibly the last, which is filled from left to right.
- Satisfies the Max-Heap Property: The key of any node is greater than or equal to the keys of its children.

Key Consequence: The largest element is always at the root of the tree!

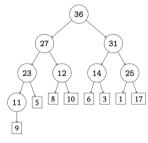
Key Properties - Since a Heap is a complete binary tree:

- Depth $\leq \lfloor \log(n) \rfloor$
- # Leaves $\leq \lceil n/2 \rceil$



Your-Turn: Max-Heap Operations

(b) Consider the following max-heap:

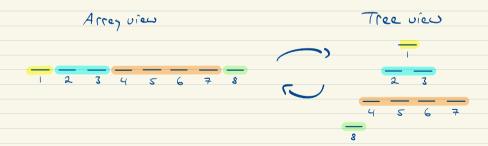


Draw the max-heap after two ExtractMax operations.

Implementing a Max-Heap using Arrays

Array Representation: A heap is typically stored in an array. For a node at index k (using 1-based indexing):

- Its parent is at index $\lfloor k/2 \rfloor$.
- Its left child is at 2k.
- Its right child is at 2k + 1.



Heapsort

HeapSort proceeds in two phases:

- Build-Max-Heap: First, convert the unsorted input array into a max-heap (or start with an empty heap and add elements)
- **Sort:** Repeatedly perform the following steps:
 - **Swap** the maximum element A[1] with the last element of the current heap, A[i].
 - Reduce heap size by one. The swapped element is now in its final sorted position.
 - Restore Heap Property: The new root may violate the heap property. Fix by letting the element "sink" to its correct position.

RestoreHeapCondition (Sift-Down):

```
Heapsort(A)
  n = A.length
  for i = floor(n/2)..1 do: // 1. Build the initial max-heap
    RestoreHeapCondition(A, i, n)
  for i = n..2 do: // 2. Extract elements one by one
    swap(A[1], A[i])
    RestoreHeapCondition(A, 1, i-1)
```


Swap with largest child until restored.

Heapsort: Analysis Properties

Runtime Analysis

- **Build-Heap:** The first loop runs $\approx n/2$ times. Each 'RestoreHeapCondition' call takes at most $O(\log n)$ time
 - $\implies O(n \log n)$ in total (a tighter analysis shows it's actually O(n)).
- **Sorting Phase:** The second loop runs n-1 times. The i-th iteration takes $O(\log i)$ for the 'RestoreHeapCondition' call. The total time is $\sum_{i=2}^{n} O(\log i) = \mathbf{O}(\mathbf{n} \log \mathbf{n})$.

Additionally:

- Space Complexity: O(1) extra space for in-place sorting.
- Locality: Not very good. Accessing parents and children can involve large jumps in memory, which is not cache-friendly.

Abstract Data Types (ADT)

A fundamental concept in computer science is the **separation of interface and implementation**.

Abstract Data Type (ADT)

An ADT is a model for a data type. It specifies:

- A set of **objects** (i.e., the type of data being stored).
- A set of **operations** that can be performed on these objects.

An ADT defines what can be done, but not how it is done.

A **Data Structure** is a concrete implementation of an ADT.

Example: The List ADT

- Objects: A collection of items in a fixed sequence.
- Operations (a selection):
 - 'insert(k, L)': Add an item with key 'k' to the end of list 'L'.
 - 'get(i, L)': Return the i-th item in 'L'.
 - 'delete(o, L)': Remove object 'o' from list 'L'.

Data Structures for the List ADT

The choice of data structure affects the performance of the ADT's operations. Let's compare three common implementations for the List ADT.

Operation	Array	Singly Linked List	Doubly Linked List
get(i)	O(1)	<i>O</i> (<i>i</i>)	<i>O</i> (<i>i</i>)
insert (at end)	O(1)	$O(n)^*$	O(1)
insertAfter(o, k)	O(n)	O(1)	O(1)
delete(o)	O(n)	O(n)	O(1)

Assumes a pointer/index to object 'o' is given for 'insertAfter' and 'delete'. *O(1) if we keep a pointer to the tail.

Key Trade-off: Arrays provide fast random access (get(i)), while linked lists provide fast insertions and deletions in the middle.

Questions?

Max-Heap Proof

Recall that a max-heap is a complete binary tree that satisfies the max-heap property:

For any node P with a child C, it must be that $key(P) \ge key(C)$.

Let T be a max-heap. Prove by induction that for any node x in T, the key of x is greater than or equal to the key of any other node y in the subtree rooted at x.

- B.C.:
- 4 I.H.:
- I.S.:

Induction - HS19

/ 4 P

d) Induction: Prove by mathematical induction that for any positive integer n,

$$\sum_{k=1}^{n} \frac{1}{k^2} \le 2 - \frac{1}{n} \, .$$

Peer Grading

Peer-Grading Exercise

This week's peer-grading exercise is **Exercise 4.4**

Each group grades the group below in the table I sent you (resp. the last one grades the first one). Please send the other group your solution. If you don't get their solution, please contact me so I can send it to you.