Week 6

Dictionaries, 2-3 Trees & Dynamic Programming

Thorben Klabunde
th-kl.ch

October 27, 2025

www.th-kl.ch

© Mini-Quiz

© Assignment

e Recap

@ Additional Practice

© Peer Grading

Mini-Quiz

Assignment

Feedback Assignment 4

Common points from last week’s assignment:

o Ex. 4.3: Remember that you are writing a correctness proof. Even though it appears
"less formal”, you should apply the same rigor, i.e., be precise in your wording, stick to
your invariant, make your reasoning explicit and explain why the code works.

o Ex. 4.4: Good work on this ex. but be careful with edge cases (index out of bounds).
Also, although not incorrect, keeping your code simple generally helps avoid bugs. You
don’t need to optimize it to the last iteration if the O-notation remains the same.

o Ex. 4.5: Well done! Only point, get acquainted with the rounding operators. In the
exam, rounding errors give point deductions.

Remember to check the detailed feedback on Moodle! Reach out if you have any questions
regarding the corrections.

@ We will have a closer look at Ex. 5.2 and Ex. 5.3b).
@ For Ex. 5.4, please refer to the Master Solution and the slides from Week 4.

5.2) - Walkthrough

Exercise 5.2 Guessing an interval.
Alice and Bob play the following game:
« Alice selects two integers 1 < a < b < 200, which she keeps secret.
« Then, Alice and Bob repeat the following:
— Bob chooses two integers 0 < a’ < b’ < 201.
- Ifa=a and b = ¥/, Bob wins.
- Ifa’ <aandb < ¥, Alice tells Bob ‘my numbers are strictly between your numbers!".
— Otherwise, Alice does not give any clue to Bob.

Bob claims that he has a strategy to win this game in 12 attempts at most. Prove that such a strategy
cannot exist.

Hint: Represent Bob’s strategy as a decision tree. Each edge of the decision tree corresponds to one of Alice’s
answers, while each leaf corresponds to a win for Bob.

Hint: After defining the decision tree, you can show that there is at most one leaf for every non-leaf node
and the number of non-leaf nodes is at most 2™ — 1 for a tree of depthn forn € Ng = NU {0}.

Ex. 5.2) - Walkthrough

YMain (ddea: Hodel as o dacision tree & at&-\L ouesr the L\U&Lt.

(1) Noticq Haet e Jehe <o L gtouctuced as a decision-¢lee

/N/’Ci Chosges /OCL(lf— (QX,$7> , | < Sx < é«7 < 200
31,\&4‘ ','(Q“&()

L,’,\f/ lNo Lint

win:

(ax,8)=(a,,6))

ol guegses:

@)
(2)
)

Ex. 5.3b) - Walkthrough

Algorithm 2
function h(n)
i1
while i < n do
10
ii+1
k(n)
k(n)
function k(n)
i 2
while i < ndo
f0
i %

h(n/2)

Ex. 5.3b) - Walkthrough

Algorithm 2
function h(n) ded L(a):
i1 -
while i < n do 'i‘(n
70 phite <o
i—i+1 JO
k(n) | e i+
k(n) Soe tin L .
function k(n) _or: :1 Receéeq :
P2 N L
while i < ndo iLV(‘;O\Lm ubtile k<
0, (<i® FO
RS & et
h(n/2) NG be

LW Lave {o deal 0l to Hinpe ki et take reading oF8 e mmathe o ((té(e hack
(1) the fupnds of calts toS /s Split up §ta. () & k(a),obick calt eacl, otter,
(2) Y /oa(? —condition /n «(n) does not (et s iy danbe &e numler of itahons.

For (() Ao f"CQ N

Foc (9~)/nq«h'c¢ :

ADT Worterbuch (Dictionary)

A collection managing unique keys, like a real dictionary maps words to definitions. Supports:
search(x), insert(x), delete(x).

Why not simple structures? Arrays and Lists have drawbacks:
e Unsorted Array & Linked List: Slow search O(n).

@ Sorted Array: Slow updates (insert/delete) O(n).

Goal: O(logn) for all operations. How? Trees!

Binary Search Trees (BSTs)

Idea: Organize keys in a binary tree for faster search.

The Rule: Suchbaumbedingung

For every node z:
o All keys in left subtree < z.key.
@ All keys in right subtree > z.key.

@ Operations: Follow the rule to search for keys.
Insert at leaves to maintain the search-tree
condition.

o Runtime: O(h), where h is the tree height.

@ Problem: What if the tree becomes unbalanced?

A search tree with 10 nodes and height 3

Recap: Binary Tree Properties

Recall From last Leele (see Slides week S)

{alencedh bassiences
levek # nodles :
o &° = 2
N 3
-3 /O\ 7 heigt /O\ =
I o o o \o = Uege @) o o hefgt = o0)
A | k
\ ——— -
ﬁé:\(#("’de‘s‘ # leaves € 2 O/\O
S Zg_: _ 21«4' -

=0

Takeavey Ensure tree séaczs balanceol (uP toa o&sru.) Jor eSSicient o?ereéims (dafu'/\seré(o(c(afz),

Solution: 2-3 Trees (Our Version

You saw in the lecture that the structure of a complete binary tree is too rigid for efficient
insert and delete operations.

2-3 Trees relax some constraints, enabling efficient operations while maintaining the
important properties. Notably:

@ External Tree: Keys are only in the leaves.

@ 2-3 Condition: Internal nodes have 2 or 3 children

© Navigation Using Separators: Internal nodes have separators (not keys) that determine
the search intervals

@ Guaranteed Logarithmic Height: 2-3 Trees maintain a logarithmic height (derivation to
follow)

Disclaimer: The notion of 2-3 Trees as we introduce them in the lecture is not standard.
Be careful with material online on this topic and stick to the script.

Balanced Trees: 2-3 Trees (Our Version)

I3, LS
. / \ -
Jw‘a(c Search 67 H * g * (8
o(aéarh;nf/\d Cp Taterna(aodes have All feaves ace ot the Same “'{SM and §ince
intecvals Sor kegs. 2 or 3 chilcdren a 2-3 écee o8 LL{SL‘é W hes ot (eas€ Q-
(eaves, i¢ koloks:
N
<, S< €8 \¢%a 2“¢n = kL logn € O (egn)
|
L 6 13 s 20

Kuzs m(7 in eaves

Recap

2-3 Trees: Insert Recap

Steps:
© Search & Insert: Find position, add new leaf and parent separator.

search(18)

1720 insert(18) 1IAZ0

17 19 24 17 19 24

Recap

2-3 Trees: Insert Recap

Steps:
@ Search & Insert: Find position, add new leaf and parent separator.
@ Rebalance (if 4 children):

Split the node with 4 children into two nodes (2 children each).
Push the middle separator up to the parent.

Suchbaumbedingung
weiter erfiillt

18 aufspalten 17 20
U1 1 7 20 U3 AAAAAAAANS U1 U3

Ul U2 U3 U4 up U2 Uz Ug

Recap

2-3 Trees: Insert Recap

Steps:
OpSearch & Insert: Find position, add new leaf and parent separator.
@ Rebalance (if 4 children):
Split the node with 4 children into two nodes (2 children each).
Push the middle separator up to the parent.

© Propagate Up: If pushing up causes the parent to have 4 children, repeat the split
process recursively. A new root might be created if the original root splits.

Runtime: Search in O(log n) + at most O(log n) recursive splits = O(log n) in total.

5‘34 \ 5|34

aufspalten

k%% 1%8 20 v3 AAAAAAANNS U1 17 20 V3

Uy U2 Uz Uq up U2 Uz Uq

Recap

2-3 Trees: Delete Recap

@ Search & Remove: Find leaf, remove it and parent separator.

$ 11

9«10 delete(11)

Recap

2-3 Trees: Delete Recap

© Search & Remove: Find leaf, remove it and parent separator.
@ Rebalance (if 1 child): Let node v have 1 child. Check sibling wu.

Case 1: Adoption (if u has 3 children): v adopts a child from u. Redistribute
separators.

Suchbaumbedingung
weiter erfiillt

Adoption
AAAAAAS

2-3 Trees: Delete Recap

© Search & Remove: Find leaf, remove it and parent separator.

@ Rebalance (if 1 child): Let node v have 1 child. Check sibling wv.
Case 1: Adoption (if u has 3 children): v adopts a child from u. Redistribute
separators.
Case 2: Merge (if u has 2 children): Combine v's child and u’s children. Pull separator
down from parent.

© Propagate Up: Merging removes a child from the parent. May require recursive
rebalancing upwards. Root might be removed if it ends up with 1 child.

verliert

.44 ein Kind

Verschmelzen
AAAAAAAS

50 81

V1 ul u9

[Jocleeof Ex:;hp(e :

b Togft€ SO Infe éhe Je@ooﬂnj 2-3 €cee :

r /3 \m
30 6O =
P N /N

Lo Yo 8o (Lo (o

Dynamic Programming: The Idea

What is it? A technique to solve problems by breaking them down into simpler, overlapping
subproblems. Solve each subproblem only once and store its result.

Example: Calculating Fibonacci F, = F,_1 + F,_» Naive recursion is slow because it
recalculates values like F3 many times.
/G‘ﬂ))\

| f/w
/\%ﬁ)
LAY,

b

Y

o < =

(Fib(s) Fib(2) Fib(?ﬂ (Fib(l\) (Fib(2)) ’;3(} (/
w>\\«/ NN N NGNS
o (o) () () (D) (DD
SICI0101I01010.
N N
" (L)

DP avoids this re-computation.

DP Techniques: Memoization vs. Bottom-Up

1. Memoization (Top-Down): Start with the original problem and use recursion. Store
results in a table (‘memo") as you compute them. Check the table before computing.

memo = array filled with -1
FibM(n) :
if memo[n] != -1: return memo[n] // Already solved? Return stored value.
if n <= 2: result = 1
else: result = FibM(n-1) + FibM(n-2) // Compute recursively.
memo [n] = result // Store result.
return result

2. Bottom-Up (lterative): Figure out the order needed. Start with base cases and compute
solutions for progressively larger subproblems until you reach the final answer.

FibBU(n) :
F = new array[1l..n]
F[1] = 1; F[2] = 1 // Base cases.
for i = 3 to n:
F[i]l = F[i-1] + F[i-2] // Compute using previous results.
return F[n]

Memoization vs. Bottom-Up: Comparison Table

Top-Down / Memoization Bottom-Up / lterative
Pros @ Often mimics the recursive structure @ Generally faster due to no recursion
directly, can be easier to think of overhead.
initially.

@ Avoids potential stack overflow errors
@ Only computes subproblems actually from deep recursion.

needed for the final answer. @ Often allows for space optimizations

o Computation order is handled (e.g., using only the last row/few
automatically by recursion. values).
Cons @ Suffers from function call overhead. @ Requires careful thought about the
@ Can hit recursion depth limits (stack correct order to compute subproblems.
overflow). @ Might compute subproblems not strictly
needed for the specific final answer
asked.

Note: In this course, we will always use Bottom-up

Your DP Strategy

Think of DP as exploring dependencies:

© Define Subproblem: What piece of the final answer are you trying to calculate?
Parameterize it (e.g., result for first j items, result ending at index j).
@ Find the Connection (Recurrence): How can you get the answer for your current goal

using answers you've already found for smaller/simpler goals? What choices do you have
at each step?

o Example: To get F,, | need F,_1 and F,_».
o Example: To find the best path to i, consider the best paths to possible predecessors ;.

@ ldentify the Starting Point (Base Cases): What are the simplest goals you know the
answer to without needing further connections? (e.g., Fyi, F>, empty string, first element)

@ Extract the Solution: Systematically calculate answers for your goals, starting from the
base cases and using the connections, until you reach your main goal.

Example 1: Jump Game

Problem

Min jumps from index 1 to n. From i, can jump to j € [i + 1,7+ A[/]].

Intuition for Subproblem: We want the minimum jumps to reach the target n. What
information helps us get there? Knowing the minimum jumps to reach intermediate positions
seems useful. If we know the minimum jumps to reach all positions j < i, maybe we can figure
out the minimum jumps to reach ;.

Subproblem Attempt 1: DP[i] = Min jumps to reach index i
@ Recurrence: To reach i, we must have jumped from some j < i where j + A[j] > i. We
want the best such j. DP[i] =14+ min{DP[j] |1<j<i, j+A[}]>i}
e Base Case: DP[1] =0.
e Result: DP[n].
o Runtime: O(n?) - requires checking all previous j for each i (27:_11 i =0(n?)).

Jump Game: Improving the Approach

Alternative Angle: Instead of focusing on the destination (i), let's focus on the number of
jumps (k). What's the farthest we can reach in k jumps?

Subproblem Attempt 2: DP[i] = Max index reachable in i jumps

@ Recurrence (Improved): The farthest reach with k jumps (DP[k]) is found by
considering the farthest jump possible from any position j that was newly reachable in
exactly k — 1 jumps (i.e., DP[k — 2] < j < DP[k — 1]).

DP[k] = max{j + A[j] | DP[k — 2] < j < DP[k — 1]}

e Base Cases: DP[0] =1, DP[1] =1+ A[0].
@ Result: Smallest k where M[k] > n.

@ Runtime: Each index j is considered in the max only once over the entire algorithm.
O(n).

Worked Exatple:

5
LB
A]_ O S S - N AGY+ i = hex reactedle il
Mox.peach. | ofx i
br: i ‘' ow . Seacch ru\dc Joe DOLT g
ldx © o | 2 K 4“5 6 2 8

/Z("nér/"'ﬂ = O ((\> INca Oe CD()Q/'D(E(‘ &UU) @f\ﬁ(\] ‘n A o(\(7 onca (CO/\PQK Co(ocf(\J
o\(\J seaccl (‘a.r\éa),

Example 2: Longest Common Subsequence (LGT)

Problem
Given A[l..n], B[1..m]. Find length of longest shared subsequence (not necessarily contiguous).

Intuition for Subproblem: We are comparing two sequences. The problem involves making
decisions based on corresponding characters.
e Trying L[i] = LGT of A[L..i], B[1..i] fails because the optimal solution for prefixes doesn't
necessarily extend to the optimal solution for longer strings. We lose crucial info about
where the subsequence ends.

@ We need to track progress in both strings independently. This points towards a 2D
subproblem involving prefixes of both strings.

Example 2: Longest Common Subsequence (LGT)

Given A[l..n], B[1..m]. Find length of longest shared subsequence. E.g., A=TIGER, B=ZIEGE
= LGT="IGE", Length=3.

Subproblem: L[/,] = Length of LGT for A[1..i/] and B[1..j]

Recurrence: Consider a; and b;.
o If a; = bj: They match! Include this character. L[i,j] =1+ L[i —1,j —1].
o If aj # bj: We can't use both. The LGT is the best we can get by either ignoring a;
(L[’ - 17_/]) or ignoring bj (L[l7./ - 1]) L[’vJ] = maX{L[’ - 17.j], L[I,J - 1]}
Base Cases: L[i,0] =0, L[0,;] =0.

Result: L[n, m].

Runtime: Fill n x m table, O(1) per cell = O(n-m).

Worked Example:

Find the Longest Common Subsequence of " TIGER”, " ZIEGE”

¢+ T I G E

m o m

Example 3: Editierdistanz (Edit Distance)

Min operations (insert, delete, replace) to transform A — B. E.g., TIGER — ZIEGE needs 3
ops.

Intuition for Subproblem: Very similar structure to LGT — transforming one sequence into
another using character operations. We're comparing prefixes again. The same logic applies:
we need to track progress on both strings using two indices.

Have a look at the script for the specifics or message me in case anything is unclear!

Questions?

Additional Practice

Additional Practice

DP - Min. Cost Stairs

Description:

You are given an integer array cost where cost|i] is the cost of ith step on a staircase. Once you
pay the cost, you can either climb one or two steps.

You can either start from the step with index 0, or the step with index 1.
Return the minimum cost to reach the top of the floor.

Example:
@ Input: cost = [10,15,20]
@ Output: 15

o Explanation: You will start at index 1, Pay 15 and climb two steps to reach the top. The
total cost is 15.

Additional Practice

DP - Min. Cost Stairs (1/2)

Compute the solution using bottom-up dynamic programming and state the run time of your algorithm.

Address the following aspects in your solution:

© Definition of the DP table: What are the dimensions of the table DP [. . .]? What is the
meaning of each entry?

© Computation of an entry: How can an entry be computed from the values of other entries?
Specify the base cases, i.e., the entries that do not depend on others.

see next page for cont.

Additional Practice

DP - Min. Cost Stairs (2/2)

© Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

© Extracting the solution: How can the final solution be extracted once the table has been filled?

@ Runtime: What is the run time of your solution?

When you’re done, try implementing your solution on CodeExpert!

Additional Practice

Peer Grading

Peer Grading

Peer-Grading Exercise

This week's peer-grading exercise is Exercise 5.4
Please follow the usual process:

o Grade the assigned group's submission.

@ Give constructive feedback and upload your feedback to Moodle by 23.59 tonight, at the
latest.

@ Contact me if you don't receive a submission to grade.

Peer Grading

	Mini-Quiz
	Assignment
	Recap
	Additional Practice
	Peer Grading

