
Week 6

Dictionaries, 2-3 Trees & Dynamic Programming

Thorben Klabunde

th-kl.ch

October 27, 2025

Mini-Quiz Assignment Recap Additional Practice Peer Grading

www.th-kl.ch


Agenda

1 Mini-Quiz

2 Assignment

3 Recap

4 Additional Practice

5 Peer Grading

Mini-Quiz Assignment Recap Additional Practice Peer Grading



Mini-Quiz

Mini-Quiz Assignment Recap Additional Practice Peer Grading



Assignment

Mini-Quiz Assignment Recap Additional Practice Peer Grading



Feedback Assignment 4

Common points from last week’s assignment:

Ex. 4.3: Remember that you are writing a correctness proof. Even though it appears
”less formal”, you should apply the same rigor, i.e., be precise in your wording, stick to
your invariant, make your reasoning explicit and explain why the code works.

Ex. 4.4: Good work on this ex. but be careful with edge cases (index out of bounds).
Also, although not incorrect, keeping your code simple generally helps avoid bugs. You
don’t need to optimize it to the last iteration if the O-notation remains the same.

Ex. 4.5: Well done! Only point, get acquainted with the rounding operators. In the
exam, rounding errors give point deductions.

Remember to check the detailed feedback on Moodle! Reach out if you have any questions
regarding the corrections.

Mini-Quiz Assignment Recap Additional Practice Peer Grading



Assignment 5

We will have a closer look at Ex. 5.2 and Ex. 5.3b).

For Ex. 5.4, please refer to the Master Solution and the slides from Week 4.

Mini-Quiz Assignment Recap Additional Practice Peer Grading



Ex. 5.2) - Walkthrough

Mini-Quiz Assignment Recap Additional Practice Peer Grading



Ex. 5.2) - Walkthrough

Mini-Quiz Assignment Recap Additional Practice Peer Grading

Main idea : Model esa decision tree & ergue over
the height.

(1) Notice that the game can
be structured as a decision-tree:

Alice chooses peir (ax , by) , 18ax by =200

guess : (a ,, bi)
Bob guesses : *

no hirtLint

win :

(ax ,b,) = (a, b)

(2)

(3)

(4)



Ex. 5.3b) - Walkthrough

Mini-Quiz Assignment Recap Additional Practice Peer Grading



Ex. 5.3b) - Walkthrough

Mini-Quiz Assignment Recap Additional Practice Peer Grading

def h(n) :

ic 1

#i

E 3 Revitea
f()

4(n(a) n = k+ 1

We have to deal with two things here that make reading off the runtime a little hard.
1) the number of calls to E is split up Str . h() & k() , which call each other
(2) the loop-condition in h() does not let us easily dive the number of iterations .

For (1) notice :

For (2)
,
notice :



Mini-Quiz Assignment Recap Additional Practice Peer Grading



Recap

Mini-Quiz Assignment Recap Additional Practice Peer Grading



ADT Wörterbuch (Dictionary)

What is it?

A collection managing unique keys, like a real dictionary maps words to definitions. Supports:
search(x), insert(x), delete(x).

Why not simple structures? Arrays and Lists have drawbacks:

Unsorted Array & Linked List: Slow search O(n).

Sorted Array: Slow updates (insert/delete) O(n).

Goal: O(log n) for all operations. How? Trees!

Mini-Quiz Assignment Recap Additional Practice Peer Grading



Binary Search Trees (BSTs)

Idea: Organize keys in a binary tree for faster search.

The Rule: Suchbaumbedingung

For every node z :

All keys in left subtree < z .key .

All keys in right subtree > z .key .

Operations: Follow the rule to search for keys.
Insert at leaves to maintain the search-tree
condition.

Runtime: O(h), where h is the tree height.

Problem: What if the tree becomes unbalanced?

A search tree with 10 nodes and height 3

Mini-Quiz Assignment Recap Additional Practice Peer Grading



Recap: Binary Tree Properties

Mini-Quiz Mini-Quiz Assignment Theory Recap Additional Practice Peer GradingMini-Quiz Assignment Recap Additional Practice Peer Grading



Solution: 2-3 Trees (Our Version

You saw in the lecture that the structure of a complete binary tree is too rigid for e!cient
insert and delete operations.

2-3 Trees relax some constraints, enabling e!cient operations while maintaining the
important properties. Notably:

1 External Tree: Keys are only in the leaves.
2 2-3 Condition: Internal nodes have 2 or 3 children
3 Navigation Using Separators: Internal nodes have separators (not keys) that determine

the search intervals
4 Guaranteed Logarithmic Height: 2-3 Trees maintain a logarithmic height (derivation to

follow)

Disclaimer: The notion of 2-3 Trees as we introduce them in the lecture is not standard.
Be careful with material online on this topic and stick to the script.

Mini-Quiz Assignment Recap Additional Practice Peer Grading



Balanced Trees: 2-3 Trees (Our Version)

Mini-Quiz Assignment Recap Additional Practice Peer Grading

13. 25

a
&

3 Separators (S,)

· ↑ Logarithmic Height :· 182 2-3 condition4guide search by
All leaves are at the some height and sincedetermining L Internal nodes have

intervals for keys . a 2-3 tree of height h haset least 242 or 3 children

leaves
,
it holds :

- S, SS2 <S2 2 = n() logn = O(logu)

2 13 156

(
1 External tree : Keys only in leaves



2-3 Trees: Insert Recap

Steps:
1 Search & Insert: Find position, add new leaf and parent separator.

Mini-Quiz Assignment Recap Additional Practice Peer Grading



2-3 Trees: Insert Recap

Steps:
1 Search & Insert: Find position, add new leaf and parent separator.

2 Rebalance (if 4 children):

Split the node with 4 children into two nodes (2 children each).

Push the middle separator up to the parent.

Mini-Quiz Assignment Recap Additional Practice Peer Grading



2-3 Trees: Insert Recap

Steps:
1 Search & Insert: Find position, add new leaf and parent separator.

2 Rebalance (if 4 children):

Split the node with 4 children into two nodes (2 children each).

Push the middle separator up to the parent.

3 Propagate Up: If pushing up causes the parent to have 4 children, repeat the split
process recursively. A new root might be created if the original root splits.

Runtime: Search in O(log n) + at most O(log n) recursive splits =→ O(log n) in total.

Mini-Quiz Assignment Recap Additional Practice Peer Grading



2-3 Trees: Delete Recap

1 Search & Remove: Find leaf, remove it and parent separator.

Mini-Quiz Assignment Recap Additional Practice Peer Grading



2-3 Trees: Delete Recap

1 Search & Remove: Find leaf, remove it and parent separator.
2 Rebalance (if 1 child): Let node v have 1 child. Check sibling u.

Case 1: Adoption (if u has 3 children): v adopts a child from u. Redistribute
separators.

Mini-Quiz Assignment Recap Additional Practice Peer Grading



2-3 Trees: Delete Recap

1 Search & Remove: Find leaf, remove it and parent separator.
2 Rebalance (if 1 child): Let node v have 1 child. Check sibling u.

Case 1: Adoption (if u has 3 children): v adopts a child from u. Redistribute
separators.

Case 2: Merge (if u has 2 children): Combine v ’s child and u’s children. Pull separator
down from parent.

3 Propagate Up: Merging removes a child from the parent. May require recursive
rebalancing upwards. Root might be removed if it ends up with 1 child.

Mini-Quiz Assignment Recap Additional Practice Peer Grading



Mini-Quiz Assignment Recap Additional Practice Peer Grading

Worked Example :

& Insert 50 into the following 2-3 tree :

100

[30 , 60] [140]

20 40 80 120 160



Dynamic Programming: The Idea

What is it? A technique to solve problems by breaking them down into simpler, overlapping
subproblems. Solve each subproblem only once and store its result.

Example: Calculating Fibonacci Fn = Fn→1 + Fn→2 Naive recursion is slow because it
recalculates values like F3 many times.

DP avoids this re-computation.
Mini-Quiz Assignment Recap Additional Practice Peer Grading



DP Techniques: Memoization vs. Bottom-Up

1. Memoization (Top-Down): Start with the original problem and use recursion. Store
results in a table (‘memo‘) as you compute them. Check the table before computing.
memo = array filled with -1
FibM(n):

if memo[n] != -1: return memo[n] // Already solved? Return stored value.
if n <= 2: result = 1
else: result = FibM(n-1) + FibM(n-2) // Compute recursively.
memo[n] = result // Store result.
return result

2. Bottom-Up (Iterative): Figure out the order needed. Start with base cases and compute
solutions for progressively larger subproblems until you reach the final answer.
FibBU(n):

F = new array[1..n]
F[1] = 1; F[2] = 1 // Base cases.
for i = 3 to n:

F[i] = F[i-1] + F[i-2] // Compute using previous results.
return F[n]

Mini-Quiz Assignment Recap Additional Practice Peer Grading



Memoization vs. Bottom-Up: Comparison Table

Pros

Top-Down / Memoization

Often mimics the recursive structure
directly, can be easier to think of
initially.

Only computes subproblems actually
needed for the final answer.

Computation order is handled
automatically by recursion.

Bottom-Up / Iterative

Generally faster due to no recursion
overhead.

Avoids potential stack overflow errors
from deep recursion.

Often allows for space optimizations
(e.g., using only the last row/few
values).

Cons Su”ers from function call overhead.

Can hit recursion depth limits (stack
overflow).

Requires careful thought about the
correct order to compute subproblems.

Might compute subproblems not strictly
needed for the specific final answer
asked.

Note: In this course, we will always use Bottom-up

Mini-Quiz Assignment Recap Additional Practice Peer Grading



Your DP Strategy

Think of DP as exploring dependencies:

1 Define Subproblem: What piece of the final answer are you trying to calculate?
Parameterize it (e.g., result for first i items, result ending at index j).

2 Find the Connection (Recurrence): How can you get the answer for your current goal
using answers you’ve already found for smaller/simpler goals? What choices do you have
at each step?

Example: To get Fn, I need Fn→1 and Fn→2.

Example: To find the best path to i , consider the best paths to possible predecessors j .

3 Identify the Starting Point (Base Cases): What are the simplest goals you know the
answer to without needing further connections? (e.g., F1,F2, empty string, first element)

4 Extract the Solution: Systematically calculate answers for your goals, starting from the
base cases and using the connections, until you reach your main goal.

Mini-Quiz Assignment Recap Additional Practice Peer Grading



Example 1: Jump Game

Problem

Min jumps from index 1 to n. From i , can jump to j ↑ [i + 1, i + A[i ]].

Intuition for Subproblem: We want the minimum jumps to reach the target n. What
information helps us get there? Knowing the minimum jumps to reach intermediate positions
seems useful. If we know the minimum jumps to reach all positions j < i , maybe we can figure
out the minimum jumps to reach i .

Subproblem Attempt 1: DP[i ] = Min jumps to reach index i

Recurrence: To reach i , we must have jumped from some j < i where j + A[j ] ↓ i . We
want the best such j . DP[i ] = 1 + min{DP[j ] | 1 ↔ j < i , j + A[j ] ↓ i}
Base Case: DP[1] = 0.

Result: DP[n].

Runtime: O(n2) - requires checking all previous j for each i (
∑n→1

i=1 i = #(n2)).

Mini-Quiz Assignment Recap Additional Practice Peer Grading



Jump Game: Improving the Approach

Alternative Angle: Instead of focusing on the destination (i), let’s focus on the number of
jumps (k). What’s the farthest we can reach in k jumps?

Subproblem Attempt 2: DP[i ] = Max index reachable in i jumps

Recurrence (Improved): The farthest reach with k jumps (DP[k]) is found by
considering the farthest jump possible from any position j that was newly reachable in
exactly k ↗ 1 jumps (i.e., DP[k ↗ 2] < j ↔ DP[k ↗ 1]).

DP[k] = max{j + A[j ] | DP[k ↗ 2] < j ↔ DP[k ↗ 1]}

Base Cases: DP[0] = 1, DP[1] = 1 + A[0].

Result: Smallest k where M[k] ↓ n.

Runtime: Each index j is considered in the max only once over the entire algorithm.
O(n).

Mini-Quiz Assignment Recap Additional Practice Peer Grading



Mini-Quiz Assignment Recap Additional Practice Peer Grading

Worked Exemple :

idx : 1234567

A : ↓ ↳ & 1 1 12
*

Alib + i = max reachable idx .

Mox
. Mech . idx : ?

DP : I

idx :
.55757 search

range
For DPLi] is :

- i
/

Base cases

Runtime = 0 (n) since we consider every entry inA only once (compare coloring
and search range) .



Example 2: Longest Common Subsequence (LGT)

Problem

Given A[1..n],B[1..m]. Find length of longest shared subsequence (not necessarily contiguous).

Intuition for Subproblem: We are comparing two sequences. The problem involves making
decisions based on corresponding characters.

Trying L[i ] = LGT of A[1..i ],B[1..i ] fails because the optimal solution for prefixes doesn’t
necessarily extend to the optimal solution for longer strings. We lose crucial info about
where the subsequence ends.

We need to track progress in both strings independently. This points towards a 2D
subproblem involving prefixes of both strings.

Mini-Quiz Assignment Recap Additional Practice Peer Grading



Example 2: Longest Common Subsequence (LGT)

Problem

Given A[1..n],B[1..m]. Find length of longest shared subsequence. E.g., A=TIGER, B=ZIEGE
=→ LGT=”IGE”, Length=3.

Subproblem: L[i , j ] = Length of LGT for A[1..i ] and B[1..j ]

Recurrence: Consider ai and bj .
If ai = bj : They match! Include this character. L[i , j ] = 1 + L[i → 1, j → 1].

If ai ↑= bj : We can’t use both. The LGT is the best we can get by either ignoring ai
(L[i → 1, j ]) or ignoring bj (L[i , j → 1]). L[i , j ] = max{L[i → 1, j ], L[i , j → 1]}.

Base Cases: L[i , 0] = 0, L[0, j ] = 0.

Result: L[n,m].

Runtime: Fill n ↘m table, O(1) per cell =→ O(n ·m).

Mini-Quiz Assignment Recap Additional Practice Peer Grading



Worked Example:

Find the Longest Common Subsequence of ”TIGER”, ”ZIEGE”

Mini-Quiz Assignment Recap Additional Practice Peer Grading

& TIGER

&

Z

I

E

G

E



Example 3: Editierdistanz (Edit Distance)

Problem

Min operations (insert, delete, replace) to transform A ≃ B . E.g., TIGER ≃ ZIEGE needs 3
ops.

Intuition for Subproblem: Very similar structure to LGT – transforming one sequence into
another using character operations. We’re comparing prefixes again. The same logic applies:
we need to track progress on both strings using two indices.

Have a look at the script for the specifics or message me in case anything is unclear!

Mini-Quiz Assignment Recap Additional Practice Peer Grading



Questions?

Mini-Quiz Assignment Recap Additional Practice Peer Grading



Additional Practice

Mini-Quiz Assignment Recap Additional Practice Peer Grading



DP - Min. Cost Stairs

Description:

You are given an integer array cost where cost[i] is the cost of ith step on a staircase. Once you
pay the cost, you can either climb one or two steps.

You can either start from the step with index 0, or the step with index 1.

Return the minimum cost to reach the top of the floor.

Example:

Input: cost = [10,15,20]

Output: 15

Explanation: You will start at index 1, Pay 15 and climb two steps to reach the top. The
total cost is 15.

Mini-Quiz Assignment Recap Additional Practice Peer Grading



DP - Min. Cost Stairs (1/2)

Compute the solution using bottom-up dynamic programming and state the run time of your algorithm.

Address the following aspects in your solution:

1 Definition of the DP table: What are the dimensions of the table DP [. . .]? What is the

meaning of each entry?

2 Computation of an entry: How can an entry be computed from the values of other entries?

Specify the base cases, i.e., the entries that do not depend on others.

see next page for cont.

Mini-Quiz Assignment Recap Additional Practice Peer Grading



DP - Min. Cost Stairs (2/2)

3 Calculation order: In which order can entries be computed so that values needed for each entry

have been determined in previous steps?

4 Extracting the solution: How can the final solution be extracted once the table has been filled?

5 Runtime: What is the run time of your solution?

When you’re done, try implementing your solution on CodeExpert!

Mini-Quiz Assignment Recap Additional Practice Peer Grading



Peer Grading

Mini-Quiz Assignment Recap Additional Practice Peer Grading



Peer-Grading Exercise

This week’s peer-grading exercise is Exercise 5.4
Please follow the usual process:

Grade the assigned group’s submission.

Give constructive feedback and upload your feedback to Moodle by 23.59 tonight, at the
latest.

Contact me if you don’t receive a submission to grade.

Mini-Quiz Assignment Recap Additional Practice Peer Grading


	Mini-Quiz
	Assignment
	Recap
	Additional Practice
	Peer Grading

