Week 7

DP: LAS, Subset Sum, Knapsack

Thorben Klabunde

www.th-kl.ch

November 3, 2025

th-kl.ch

© Mini-Quiz

© Assignment

© Recap

@ 1) Sequence Alignment
© 2) Sequential Decision
© 3) Bounded Resources
@ Summary

© Additional Practice

© Peer Grading

Mini-Quiz

In a linked list data structure L, suppose you have a
pointer to an object o in L. Then inserting a key k into the
list after o (i.e. insertAfter(o, k, L)) takes O(1) time.

True ©

False

Since we have a pointer to the object o, we can replace o's
subsequent key with k and then reattach the rest of the
list to be after k. Since we are just moving around a couple
pointer values, this all takes O(1) time.

The correct answer is 'True'.

Let T" be a 2-3 tree with depth 4. Let z be the number of
leaves. It is possible for z to be equal to:

True False

10
20
50
100

200

®© ©®© © ©®© 6 60 06

1000

If every node has 2 children, then a 2-3 tree of depth 4
has 24 = 16, this is the minimum number of leaves. If
every node has 3 children then depth 4 means we have
3% = 81 leaves, this is the maximum number of leaves. Its
then possible to achieve every number in this range by
having a mix of degree 2 and degree 3 nodes.

5: False

10: False
20: True
50: True
100: False
200: False
1000: False

Let B1, B2 be two leaves in a 2-3-tree. If an insert
operation increases the depth of B1, then it also
increases the depth of B2.

True @

False

All leaves must be the same depth, so increasing the
depth of one leaf must increase the others too.

The correct answer is 'True".

We can find the maximum key of a 2-3 tree with n leaves
in time O(log(n)).

True @

False

We can keep going down the right subtree to get the
maximum key, which will be of depth log(n).

The correct answer is 'True".

Consider the subset sum problem with input A[l .. n]
and target value b, where the subproblem T'(3, s) denotes
whether s is a subset sum of A[1...4]. Fillin X such that
the recursionis T'(3,s) = T'(i — 1,s) VT (i — 1, X) (for
2<i<n).lfX <O0thenT(i — 1, X) is considered to

be false.
a. X=A[i—1]
b. X=5—A[i] ©
c. X=s5-b
d X=0b

Your answer is correct.

Achieving a subset sum of s can be done in two ways
corresponding to the two conditions. Either we can make
it by not including the element at index 7, which represents
T(i — 1, s). OR we include the element at index 4 in which
case we need to check that we can make a subset sum of
s — A[i] with elements up to index 5 — 1, corresponding
toT(i —1,s — A[i]).

The correct answer is: X = s — Al[i]

There is a known algorithm which solves subset sum in
time O(ns).

True

False ©

It was discussed in lecture that if there was a polynomial
time algorithm for subset sum, then P = N P. Thisis a
major unknown open problem.

The correct answer is 'False'.

Consider the knapsack problem with weights w;, profits p;
and weight limit W. Let P = p;+. . . +p,. Which of the
following statements are true/false:

True False

There is an algorithm
solving the problem in

time O(nW).

There is an algorithm
solving the problem in
time O(n.P).

Both are true. For O(nP) we saw in lecture a 2
dimensional DP with table entries G[i, p| = the minimum
weight needed to achieve profit at least p with items
oooth
For O(nW) we saw in lecture a 2 dimensional DP with
table entries Pl[i, w| = maximum profit achievable with
weight w with items 1. ..4.

There is an algorithm solving the problem in time

Oo(nW).

: True

There is an algorithm solving the problem in time

O(nP).

: True

There is an algorithm for knapsack which computes in
polynomial time a solution which is at least half as good as
the optimal solution.

True ©

False

In lecture we saw a polynomial algorithm that computes a
(1 = e)—approximation to the knapsack problem in time
O(n®¢1). Taking € = 1/2, we get a 1/2-approximation
which runs in time O(2n3) which is polynomial in 7.

The correct answer is 'True'.

For the knapsack problem, let OPT be the optimal

solution for the original profits p; and OPT the optimal
solution for the rounded profits p;. Which of the following
is always true?

Y iegprbi = YicoprPi ©
> icoprPi = Licopr b

Yicoprbi < YicoprPie

d. None of the above.

Your answer is correct.
Note that ZieﬁTJ’Tpi is the optimal (maximal profit)
choice of elements for the profits 5; which satisfy the

weight limit. So as O PT also satisfies the weight limit, we
know that the profit from » 7., p7; cannot be greater.

The correct answer is: Ziemﬁi > > icoprbi-

Q10

Let L be a longest ascending subsequence of A[1 ... 4]
and L’ be a longest ascending subsequence of
A[l...7+ 1]. Then L' is either identical to L, or L' is
obtained from L by adding A[i + 1] at the end.

True

False ©

Consider A = [1, 3, 2], then for A[1... 2] there is only 1
longest ascending subsequence [1, 3]. But for A[1.. . 3]
there is both [1, 3] and [1, 2] and note that the second is
not [1, 3] or some addition to that subsequence.

The correct answer is 'False".

Assignment

Feedback Assignment 5

Common points from last week's assignment:

e Function Calls: Well done! Generally just small remarks: Be careful with notation
(redefining already defined terms, writing ill-defined terms)

o Bubble Sort Proof: Like mentioned last week, make sure that you explain why/how the
algorithm achieves the correct state. Ensure that your invariant captures all required
information to allow the final conclusion. E.g., the given algorithm only had n-1 iterations,
so we need to add the additional information that the last j elements are the largest
elements to ensure correct ordering of the first element at the end.

Remember to check the detailed feedback on Moodle! Reach out if you have any questions
regarding the corrections.

@ We will have a closer look at Ex. 6.3 and Ex. 6.4 today.

@ The remaining exercises are covered in detail in the master solution. If you have any
questions, don’t hesitate to reach out!

Exercise 6.3 Introduction to dynamic programming (1 point).

Consider the recurrence

A=1
Ay =2
Az =
Ay =

Ay, =Ap1+Ap_3+2A,_4forn>5.

(a) Provide a recursive function (using pseudo code) that computes A, for n € N. You do not have to
argue correctness.

Solution:

Algorithm 1 A(n)
if n < 4 then
return n
else
return A(n — 1) + A(n — 3) + 2A(n — 4)

Ex. 6.3b)

(b) Lower bound the run time of your recursion from (a) by Q(C™) for some constant C' > 1.

ZnJormal sketch :
Le€ TN e G Mands of o,rau*h‘and of o cal €0 AGR) 0 Nell ok anare

nzY.

Notze Tt &t cach pecariia @ parforng a constat gumbs o opafehony ool v e el (o
Zhe Sase cases UL eacl coll. Ve Can thusessune Het TCA) N meno\‘on/'cefl> ('aqr«m«n&.

(&)
Then: T) = Ta-0) +T(0-7) * 2T 2 Y- Tla-4) 2 ..2 4 - T(4) > ()
L doe =4

Poo> U./.o.d, adgnve et 0 1o atviedie (5 & (Gbetha aexd gmallec m(ﬁ/b(a of C(O'f@ulb‘c)-

)
Mok €his Qrdw\af Forma (g Frow'n& NQE: /L’(_ 4 & & indaction (See mastes Solaton).

Ex. 6.3c)

(c) Improve the run time of your algorithm using memoization. Provide pseudo code of the improved
algorithm and analyze its run time.

Algorithm 2 Compute A,, using memoization

memory<— n-dimensional array filled with (—1)s
function A_MEM(n)
if memory [n] # —1 then > If A,, is already computed.
return memory [n]
if n < 4 then
memory [n] < n
return n
else
Ay < AMem(n — 1) + A Mem(n — 3) + 2A Mem(n — 4)
memory [n] + A,
return A,

Ex. 6.4

Exercise 6.4 Coin Conversion (1 point). baéﬁ ¢ {e\c d? Q(D rOQC\CK\ &0‘2\[\

Suppose you live in a country where the transactions between people are carried out by exchanging o .é o e Q (| (. % (
“aQfr / al §elkno e
coins denominated in dollars. The country uses coins with & different values, where the smallest coin a & A (e .

has value of by = 1 dollar, while other coins have values of b, b3, . .. , by, dollars. You received a bill
for n dollars and want to pay it exactly using the smallest number of coins. Assuming you have an

unlimited supply of each type of coin, define OPT to be the minimum number of coins you need to Co"\(\ +Ue)<Qh P lQ 2

pay exactly n dollars. Your task is to calculate OPT. All values n, k, by, ..., by, are positive integers.

Example: n = 17,k = 3 and b = [1,9, 6], then OPT = 4 because 17 can be obtained via 4 coins as Le.é n= {2 ’ /L: 3/ $e_ L(| 8 (6])

141+ 9+ 6. No way to obtain 17 with three or less coins exists.

(a) Consider the pseudocode of the following algorithm that “tries” to compute OPT.
/Ns-@re.—%ams q (3)

Algorithm 3
: Input: integers n, k and an array b = [1 = by, ba, bg, . .., bi].

1
P (e ophma(gel-ton i¢ & (6,6).
3: counter < 0 (

4: while n > 0 do

5: Let b[i] be the value of the largest coin b[i] such that b[i] < n. 6[‘&0_0‘7 QIDF road. lA
6 n < n — bli.

7 counter < counter + 1

8: Print(“min. number of required coins = , counter)

Algorithm 3 does not always produce the correct output. Show an example where the above algo-
rithms fails, i.e., when the output does not match OPT. Specify what are the values of n, k, b, what
is OPT and what does Algorithm 3 report.

(b) Consider the pseudocode below. Provide an upper bound in O notation that bounds the time it
takes a compute f[n] (it should be given in terms of n and k). Give a short high-level explanation
of your answer. For full points your upper bound should be tight (but you do not have to prove its

tightness).
Algorithm 4
1: Input: integers n, k. Array b = [1 = by, by, bs, ..., bg].
2:
3: Let f[1...n] be an array of integers.
4 f[0] 0 > Terminating condition.
5 for N« 1...ndo
6: fIN] « o0 > At first, we need oo coins. We try to improve upon that.
7: fori«< 1...kdo
8: if b[i] < N then
9: val < 1+ f[N —b[i]] > Use coin b[i], it remains to optimally pay N — b[¢].
10: FIN] + min(f[N],val)

11: Print(f[n])

Ex. 6.4d)

(d) Rewrite Algorithm 4 to be recursive and use memoization. The running time and correctness should
not be affected.

Notice that A(d H Solues e S‘«&Pra&(er‘—\ : &C(] = Min. Qumbs o0& Coins fo ke Sus o (.

Algorithm 4
1: Input: integers n, k. Array b = [1 = by, b, bs, ..., bg].

2:

3: Let f[1...n] be an array of integers.

4 fl0] + 0 > Terminating condition.
5: for N« 1...ndo -

6: fIN] « o0 > At first, we need oo coins. We try to improve upon that.
7: fori<—1...kdo |

8 if b[i] < N then ./

9: val < 1+ f[N —b[i]] > Use coin b[i], it remains to optimally pay N — b[z].
10: FIN] + min(f[N],val)

11: Print(f[n])

Zc\/l Eme’ Tlece ace. n diffoad stades €o (¢ CohP'«feoK, ack in O olue {o £letinnes jDr‘(a‘Df.
=> Q(ﬂk) n Cetal.

(c) Let OPT(N) be the answer (min. number of coins needed) when n = N. Algorithm 4 (correctly)
computes a function f[N] that is equal to OPT (V). Formally prove why this is the case, i.e., why
fIN] = OPT(N).

Hint: Use induction to prove the invariant f[n] = OPT(n). Assume the claim holds for all values of
n € {1,2,...,N — 1}. Then show the same holds forn = N.

Ex. 6.4c)

(c) Let OPT(N) be the answer (min. number of coins needed) when n = N. Algorithm 4 (correctly)
computes a function f[N] that is equal to OPT (V). Formally prove why this is the case, i.e., why
fIN] = OPT(N).

Hint: Use induction to prove the invariant f[n] = OPT(n). Assume the claim holds for all values of
n € {1,2,...,N — 1}. Then show the same holds forn = N.

Skoéch
Pe P(‘oco.ao(§ indachon on qa.
Bg. (et n=0. Netce Hat §[O)=0 = OPT(S) anck He EC &nbially Latehs

T4 Astane Jor some Nek o ol nell, ., b-] that SEKI=0PT(n).

Lo caredn(, Lave Oa rg-iv @ sﬁron\j nolachlon !

Mobile User

Ex. 6.4c)

(c) Let OPT(N) be the answer (min. number of coins needed) when n = N. Algorithm 4 (correctly)
computes a function f[N] that is equal to OPT (V). Formally prove why this is the case, i.e., why
fIN] = OPT(N).

Hint: Use induction to prove the invariant f[n] = OPT(n). Assume the claim holds for all values of
n € {1,2,...,N — 1}. Then show the same holds forn = N.

T.S.: T€ vehalny ¢o prove Hat fIN) = 0PTCN),
No&ice €t e ('MLWE naintains @ winhum over the gt LI+ 8[N-4] [1gicle 5o b-g20]
= [+ 80-4)2 S, Jor o ie(l].
Sqrr:asa Jor wke of contCoclichnn et ,,.
(1) @Y > oPTN) :
D 1+ F(N-§) > OPTIN), For o /e(4].
Bt clearly OPT@) = OPT(N=§) +(, Jocere i<lh] Honce, SIN-4T> OPT-¢) Sor sone i< k],
Q confradiction {5 ouc TH. huce S) & SPTW).

(Q) $IK) < oPT(N):
= |+ Fo-§73 « OPTW), Jor sose (<]
=) tD’r”!'CD%;):L;L SR-¢) ¢ oPTW) ~(, Soc sohe relk] =D OFTL) 8 adt Sptiaet | @ Conftedichan.
TE€ Sleos 4ot JIN) =OPTN). D

Mobile User

Ex. 6.4d)

Algorithm 5
1: Input: integers n, k. Array b = [1 = by, ba, b3, ..., bi].
2: Global variable: memo[l...n], initialized to —1.

3
4: function f(N)

5: if N = 0 then return 0

6. if memo[N] # —1 then return memo[N]
7 solution < oo

8 fori<« 1...kdo

9 if b[i] < N then

10: val + 1+ f(N - b[i]) > Use coin b;, it remains to optimally pay z — b;.
11: solution <+ min(solution, val) > Check if this is the best seen so far?
122 memo[N] + solution

13: return solution

14:

15: Print(“OPT =, f(n))

Ex. 6.4d)

Agarn, De 0ri& our code undes e oswmfﬁ‘m et pe hovtlhe lton Soc N=§; Ser
QS (el | ohich (¢ retucned & €he coll €0 JN-&).
Algorithm 5

1: Input: integers n, k. Array b = [1 = by, ba, b3, ..., by].

2: Global variable: memo[l...n], initialized to —1.

Q

3:
4: function f(N)

5 if N = 0 then return 0

6. if memo[N] # —1 then return memo[N]

7: solution < oo

8: fori«+ 1...kdo

9: if b[i] < N then
10: val « 14 f(N —bli]) > Use coin b;, it remains to optimally pay z — b;.
11: solution < min(solution, val) > Check if this is the best seen so far?
12 memo[N] « solution

13: return solution

14:
15: Print(“OPT = *, f(n))

Recall - The DP " Recipe”:

A general plan for solving DP problems:

@ Define a suitable subproblem.
o What is the structure of the solution? What are the parameters? (e.g., DP[i], DPIi][j])

@ Establish a recurrence relation.

o How does the solution to a problem depend on smaller subproblems?
o Define base cases!

@ Compute the solutions (Bottom-Up).
o In what order must the DP table be filled?

@ Assemble the solutions.
o Where in the table is the final solution?

© Analyze correctness and runtime.

Why Look for Patterns?

As | mentioned last week, DP is about analyzing structure.
@ The "trick” to DP is finding the right subproblem.

o Different problem structures lead to different kinds of subproblems.
@ We aren’t memorizing solutions, we are learning patterns of thought.

@ By comparing the problems, we can identify "archetypes” that help narrow down the
search space.

The structure of your subproblem should match the decision structure of your problem.

@ What choices do you make at each step?
@ What information do you need to make those choices?

Our DP Problem " Archetypes”

Most DP problems we've seen fall into one of three main families:

Sequence Alignment /
” Prefix Comparison” -
Last Week

@ Core Idea: Compare two
sequences, A and B.

@ Subproblem: DP[i][j] =
Solution for prefixes
A[l..i] and BJ[1..].

o Examples: Longest
Common Subsequence,
Edit Distance.

Sequential Decision /
”Ending At” -
Last Week
o Core Idea: Build an
optimal structure in a
single sequence where
order matters.

@ Subproblem: DP[i] =
Solution ending at index
i (or reaching 7).

o Examples: LAS, Jump
Game, Max Subarray.

Bounded Resource /
"Take It or Leave It”

o Core Idea: Select an
optimal subset of items
with a constraint.

@ Subproblem: DPIi][k] =
Solution using items 1..i
with resource k.

o Examples: 0/1
Knapsack, Subset Sum.

Connecting to This Week's Problems

Let's map this week's problems to the archetypes:
o Longest Ascending Subsequence: Archetype 2 (Sequential Decision)
e Single array A[l..n] with structural rule: ascending order

o Decision: "Which valid predecessor j < i (where A[j] < A[i]) extends best?”

@ Subset Sum: Archetype 3 (Bounded Resource)
o Items A[l..n] + target sum constraint b

e Binary choice: Take A[i] or leave it.

e 0/1 Knapsack: Archetype 3 (Bounded Resource)
o ltems with weights/profits + capacity constraint W

e Binary choice: Take item i (and pay w;) or leave it.

1) Sequence Alignment

1) Sequence Alignment

Archetype 1: Sequence Alignment Problems (Last Week)

@ Archetype: Longest Common Subsequence

@ Key Feature: Alignment. Find the best way Depends only on its 3 neighbors

to match, skip, or transform elements from
two sequences.

@ Subproblem: L[i][j] = LCS of A[1..i] and
B[1..j].

@ Key ldea: The solution for L[i][j] depends
only on decisions about the last characters, L\ 4

Ali] and Bl[j].
@ Recurrence: L[iaj]
1] = 1+L[I'—1,j'—1]' ' !fa,-:bj
maX(L[’ - 171]7 L[’aJ - 1]) if aj 7é bj

1) Sequence Alignment

Archetype 1. Why 2D?

Intuition for the Subproblem:

@ We cannot solve the problem without knowing our position in both sequences.

@ This forces us to use a 2D state: DP[i][j] = " Solution for A[1../] and B[1..]".

Why 1D Fails for LCS

Try: L[i] = LCS length for A[1../] and BJ[1..i]

Problem: The optimal LCS might use different positions from each string:
E.g., A="TIGER", B ="ZIEGE"

Optimal LCS "IGE" uses A[2,3,5] and BJ[2,3, 4]

We lose crucial information about where we are in each sequence independently.

The Core Question: "To get DP[i][j], what do we do with A[i] and B[j]?"

1) Sequence Alignment

Archetype 1: Related Problems

Problems following this pattern:
o Edit Distance:
DP[i][j] = min operations to transform A[l..i/] — B[1..j]
Decision: "Match? Replace? Insert? Delete?”
ED[i —1,j] +1
Recurrence: EDJ[i,jl = min< ED[i,j — 1]+ 1
ED[i —1,j — 1] + [A[i] # B[]
o Longest Common Substring (contiguous):
DPIi][j] = length of longest common substring ending at i,
Decision: "Does A[i] = B[j]? If yes, extend; if no, reset to 0."

Pattern Recognition: Two sequences + element-by-element decisions = DPJ/][j] for
prefixes.

1) Sequence Alignment

2) Sequential Decision

2) Sequential Decision

Archetype 2: Sequential Decision Problems

Core Pattern

Process elements one at a time in a sequence. Make decisions based on previous elements
with order-dependent rules.

Key Insight: This archetype splits into two subpatterns depending on whether the solution
requires contiguous or non-contiguous elements:

@ Contiguous/Local Pattern: Solution requires adjacent/recent elements only

e Can often decide using only DP[i — 1] or a small local window
o Leads to O(n) or O(nlog n) solutions

@ Non-Contiguous/Global Pattern: Solution can skip elements freely

e Must consider all valid predecessors j < i
o Naive approach: O(n?), but often optimizable!

2) Sequential Decision

Archetype 2a: Contiguous/Local Pattern

Canonical Example: Maximum Subarray Sum

@ Subproblem: DP[i] = max sum of subarray ending at / Only depends on

. revious element
@ Key Feature: Subarrays must be contiguous P

@ Decision: Only two choices at i:
. . . DP[i — 1]
@ Extend previous subarray: DP[i — 1] + A[i]
@ Start fresh at i: A[i]
@ Recurrence: v
DP[i]l = max(DP[i — 1] + A[{], A[i]) DPI[i]

@ Runtime: O(n) — only need previous element!

Why Local? The contiguity constraint means we can only extend the immediately previous subarray or
start over.

2) Sequential Decision

Archetype 2b: Non-Contiguous/Global Pattern (Naive)

Canonical Example: Longest Ascending Subsequence (LAS)

@ Subproblem: L[i] = length of LAS ending at i

@ Key Feature: Subsequences can skip
elements

@ Decision: Must check all valid predecessors:

o Which j < i has A[j] < A[i]?
o Which gives best L[j]?

@ Recurrence:
L[i] = 1+max({L[j] | j < i, Alj] < A[i]}u{0})

@ Runtime: O(n?) — must check all j < i

L[1]

Depends on all j < i

L[2]

L[i —1]

L[7]

Why Global? We can skip elements freely, so must consider all possible predecessors that satisfy

Alj] < Alil.

2) Sequential Decision

Archetype 2b: Optimizing Non-Contiguous Problems

The O(n?) solution is often just the starting point!

We have seen two problems where we can define the subproblem in a way as to narrow
down the viable candidates and make them efficiently searchable.

Q@ Jump Game:
o Instead of DP[i] = "min jumps to reach /" (requires checking all j < i)
o Use DP[k] = "farthest position reachable in k jumps”
e Only process each position once = O(n)

@ Longest Ascending Subsequence:

e The naive approach checks all j < i where A[j] < Alf]

o Key insight: We only care about the best (longest) subsequence ending with each possible
value

e Use binary search on (smallest possible) tail values = O(nlog n)
e Maintains: "smallest tail value for each subsequence length”

The archetype helps you find the O(n?) solution; optimization requires deeper problem-specific
insight!

2) Sequential Decision

Archetype 2: Related Problems by Subpattern

Contiguous/Local (O(n)): Non-Contiguous/Global:
e Max Subarray Sum: e LAS (naive): O(n?)
DP[i] = max(DP[i — 1] + A[i], A[i]) DP[i] = 1+ max{DP[j] | Aj] < A[i]}

Optimized: O(nlog n) with binary search
@ Min-Cost Stairs (last week): primiz (nlog n) Y

DPJ[i] = e Jump Game (naive): O(n?)
min(DP[i — 1]+ c[i —1], DP[i—2]+c[i—2]) DP[i] = 1 + min{DP[j] | j + A[j] > i}
jump from one or two steps down at cost Optimized: O(n) with subproblem change
Ci

e Max Sum Asc. Subseq.: O(n?)
Similar structure to LAS

Pattern Recognition: Contiguous — local dependency; Non-contiguous — global dependency
(but often optimizable).

2) Sequential Decision

Deep Dive: Longest Ascending Subsequence (LAS)

Definition 2.11 (LAS)
Given an array A[l..n]. We seek the length of a longest subsequence of A whose elements are

ascending.

Example: A =(2,13,17,9,11,4,78,28,15,25,99)
o Ascending subsequence: (2,13,17,78,99) —> Length 5
@ Longest ascending subsequence (LAS): (2,9,11,15,25,99) = Length 6

2) Sequential Decision

LAS: Attempt 1 (Fails)

@ Subproblem: LAT (i) = Length of the LAS in array A[l..i].
@ Problem: The solution for A[l..i — 1] doesn’t necessarily help us find the solution for A[1..i].
Example: A= (1,2,5,3,4)
o LAT(3) for (1,2,5) is 3. (Sequence: (1,2,5))
o LAT(4) for (1,2,5,3) is 3. (Sequence: (1,2,5) or (1,2,3))
o LAT(5) for (1,2,5,3,4) is 4. (Sequence: (1,2,3,4))
We cannot simply compute LAT(5) from LAT (4)!

@ Realization: We need to remember more than just the length. The ending values of the
subsequences are important.

2) Sequential Decision

LAS: Better DP (O(n?))

@ ldea: For each possible length /, we store the smallest possible
ending element of an AS of that length.

N2 3 4 s

@ Subproblem: DP[i][/] := the smallest possible ending element of 2
an AS of length / in the range A[1..i]. s \OTO o0 o0 00
@ Recurrence: To compute DPJi][/], we consider A[/]: 72 3 T \OTO >
© We don’t use A[/], instead use DP[i — 1][/]. 8 3 [3 7 8 oo oo
@ We use A[i]: We can append A[i] to an AS of length / — 1 G o4 |3 N 1 8 o oo

ending in DP[i — 1][/ — 1]. AN

5 3 4 5 o0 [

DP[i|[l] = min{DP[i — 1][1]), A[i] (if A[i] > DP[i —1][/ — 1])} N

) . 2.5 Beispiel der Tabelle M (3,1) mit A = [3,7,8,4,5]
@ Runtime: We fill an n x n table. Each cell takes O(1).

= 0(n?).

2) Sequential Decision

LAS: The O(nlog n) Solution

@ Observation 1: The rows of the DPJi][...]) table are sorted:

DPIil[l] < DPIil[l + 1] (since DP[i][l] is the smallest end v | Ha lovest il-vele that
(7111 [0/ + 1] (sin [0 n Siad S et s S e

value). Can inprods
Rre)
@ Algorithm: We don't need the whole O(n?) table, just an (
array DP[1..n], where DP[]] stores the smallest end value of ‘ir I3, 8 1L
an AS of length / found so far. ‘,‘_ ;"f’"“l”—;& AS o8 (eyght 3.
T[1..n] + oo, T[0] + —o0 ! 12 3.4 5 7 dor ol

letaf elomody

. 6
for i < 1to ndo M(e,1) /OQ/ /oo/ // /w/ /oo/ /m/ oo Uevser
Find / (with binary search) such that Ny {ailualng)
Tl —1] < Ali] < T[] 2 // // /e/ 25 99

TN + Al 2
end for /9/ 1 /B/

return largest / such that T[/] < oo 4 15

@ Runtime: n iterations. Each iteration: one binary search
(O(logn)). = O(nlogn).

2) Sequential Decision

3) Bounded Resources

3) Bounded Resources

Archetype 3: Bounded Resource Problems

@ Archetype: 0/1 Knapsack

@ Key Feature: Resource Management. We
have a limit and must make binary choices.
Order doesn’t matter.

@ Subproblem: P[i][w] = Max profit using
items 1../ with capacity w.

@ Key Idea: For item /i, make a single binary
choice:

© Don't Take: P[i — 1][w]
Q@ Take: p; + P[i — 1][w — wj]

@ Recurrence:

P[i, w] = max(P[i—1,w], pi+P[i—1, w—w;])

Depends only on the row above (items 1..i — 1)

Don’t Take Take

Pli —1,w] Pli—1,w— w]
Pli,w]

3) Bounded Resources

Archetype 3: Why 2D?

Intuition for the Subproblem:
@ We need to track two things:

© Which items have we considered? (the i in DP[i][k])
@ How much resource have we used? (the k in DP[i][k])

Why 1D Fails for Knapsack
Try: P[i] = max profit using items 1..i
Problem: We don't know how much capacity was used!

If we took high-profit items early, we might have no capacity left. But maybe skipping those
items leaves room for a better combination later.

We need to track remaining capacity at each step.

The Core Question: "For item i, do we 'Take It' or 'Leave It'?"

3) Bounded Resources

Problem: Subset Sum Problem

Definition 2.4 (Subset Sum)

Given: n natural numbers A[1], ..., A[n] and a target number b.

Wanted: A subset / C {1, ..., n} such that), A[i] = b.

Example:
A=(5,3,10,7,3,1), b=09.

o /| ={1,5,6} = A[l]+ A[5]+ A[6] =5+ 3+1=09. Answer: Yes.
A=(5,3,10,7,3,1), b=2.

@ No subset sums to 2. Answer: No.

Naive Approach: Try all 2" subsets = Exponential!

3) Bounded Resources

Subset Sum: The DP Solution

@ Subproblem: T(i,s) := (boolean) "Is it possible to achieve
the sum s with a subset of A[1../]?"

@ Recurrence: To compute T(/,s), we have two choices for I e e

the element A[/]: o | 7600 |

© We do not use A[i]: We must have already achieved

sum s with A[l..i —1]. = T(i—1,s)

@ We use A[i]: We must have achieved the remaining

sum s — A[i] with A[1l..i—1]. = T(i—1,s—A[i]) i1 T~ 15— Af) T(i_im

T(i,s)=T(i—1,5) v T(i—1,5—A[i] i 6

@ Base Cases: '
E I T(n,b)

e T(0,0) =1 (Sum 0 is possible with 0 elements).
e T(0,s) =0 for s > 0.

@ Solution: T(n, b).

3) Bounded Resources

Subset Sum: Analysis

Runtime
e Computation: Fill an (n+ 1) x (b+ 1) table, row by row.
Each cell T(i,s) only depends on the previous row (i — 1).
Each cell takes O(1) time.
= O(n-b)
But notice that the length of the input for value b is log b!

Pseudo-polynomial Runtime

@ The runtime is polynomial in n and the value b.
@ It is not polynomial in the input length (which is n + log b bits).
o If b=2", the runtime is ©(n-2") = exponential!

3) Bounded Resources

Problem: Knapsack Problem (0/1 Knapsack)

Definition 2.6 (Knapsack)

Given: n items, each with weight w; and profit p;. A knapsack with capacity W.
Wanted: A subset / C {1,...,n} such that > .., w; < W and), p; is maximal.

Again: Greedy strategies (e.g., "highest profit first”,
0/1 Knapsack problem.

best p;/w; ratio”) do not work for the

3) Bounded Resources

Knapsack: DP Solution 1 (O(nW))

@ ldea: Very similar to Subset Sum, but instead of "Yes/No’',
we ask for the optimal sol.

@ Subproblem: DP[i][w] := the maximum profit one can

achieve with a subset of A[L..i] given a weight limit w. U Z U '”0 U V:
@ Recurrence: For DP[i][w], two choices for A[i]: o
@ We do not take A[i]:
Maximum profit is DP[i — 1][w]. i1 o Pi-tw-w) a1
@ We take A[i] i o e
and get profit: p; + DP[i — 1][w — wj]. c o
DP[i][w] = max{DP[i — 1][w], pi + DP[i — 1][w — wi]} n oo P, W)

@ Base Case: DP[0][w] = 0 for all w.

@ Runtime: O(n- W) (pseudo-polynomial).

3) Bounded Resources

Knapsack: DP Solution 2 (O(nP))

@ ldea: Swap the roles of weight and profit.

@ Subproblem: G(i, p) := the minimum weight needed to
achieve exactly the profit p with a subset of A[1..i].
(DPIi][p] = oo if p is not reachable).

@ Recurrence: For DP[i][p], two choices for A[/]:

@ We do not take A[i]:

Min. weight is DP[i — 1][p].

@ We take A[i] (if pi < p): . i
Weight is w; plus the min. weight to get the remaining . :
profit p — p; with A[1..i — 1]: w; + DP[i — 1][p — pi].)

DPIi][p] = min{DP[i — 1][p], wi + DP[i —1][p — pi]} Gt o, o Gl) W i

@ Base Cases: DP[0][0] = 0, DP[0][p] = oo for p > 0.

@ Solution: Find max{po | DP[n][po] < W}.
@ Runtime: O(n- P) (where P =" p;).

3) Bounded Resources

The Problem with Knapsack

Subset Sum and Knapsack are NP-complete.

This means we don't expect a truly polynomial algorithm (unless P=NP (don't try to prove
it...)).

Our O(nW) and O(nP) solutions are pseudo-polynomial.

If W and P are huge? (e.g., W, P > 2"), both DP algorithms would be exponential!

New lIdea: What if an almost optimal solution is good enough?

Goal: A (1 — €)-approximation algorithm that runs in time poly(n,1/¢).

3) Bounded Resources

FPTAS: The Idea

The O(nP) algorithm is slow because P (the maximum profit) can be large.
The Trick: Round the profits!

If we divide all profits by K and round, the new maximum profit P’ =~ P/K.
= The O(nP’) algorithm is then O(nP/K) fast.

o Trade-off:

e Large K: Fast runtime, but inaccurate solution (lots of rounding error).
e Small K: Slow runtime, but accurate solution.

@ Goal: Choose K "just right” so that the error is < € - Popr and the runtime remains
poly(n, 1/e).

3) Bounded Resources

FPTAS: Runtime

Let € > 0 be our desired approximation error (e.g., ¢ = 0.1).
Q Find ppax = max;{p;}.
@ Set the scaling factor K := “Pmex,
© Create new, scaled profits: p; := K - [Z].
@ Solve the Knapsack problem with weights w; and profits p;.

@ Return the found subset OPT as the solution to the original problem.

The runtime is O(%), since we only need to fill-in every k-th column in the DP-table.

Then since P = 37 b7 < N pmax, the runtime is:
P . n? max —
O(52) < O(Arpeed) — O(Zmc) = O(nfe)

€Pmax /N

This is a Fully Polynomial Time Approximation Scheme (FPTAS).

3) Bounded Resources

FPTAS: The Algorithm

Let € > 0 be our desired approximation error (e.g., e = 0.1).

The solution OPT has a profit p(OPT) > (1 —¢€) - p(OPT).

let %7 = [L%_S i oPT = opprex. Solahon | OPT = 0(94//'\4,(gol.
‘ W _ @ ® @
Motice - ?I—K SIS S Prax & Gorr
n pi= (_%J- I | e, contidted dosa & & next betifie of . Hua Pi-p sk (rw(\clr‘(\g can Cease a diff of

0€ tbosé I .
T¢ Sollooss:
(ST is tbe opt.st Soc 77) o (lorri£q) (e %or) <%§’L> | bq @) (Srctor ot %)
I) ax
5 > S ok = T—ak 2 D— 0l -
Zeelt 2B > Z @) > 2 prma Tor— 0k = Rpr -~ -2 (- Fm)
;{fs&é#:a:.
A\Scu'/\, /aééf'OJ K= Z'AF*"K [Le ob&fain: ;%Ff—= (Psﬁ > (?O’P”I‘<{F£'> g

3) Bounded Resources

Archetype 3: Related Problems

Problems following this pattern:

o Subset Sum:
DPIi][s] = "can we make sum s using items 1../?" (boolean)
Decision: "Include A[i] or not?”
Recurrence: T[i,s] = T[i—1,s]V T[i —1,s — A[]]

@ Coin Change:
DP[i][v] = min coins to make value v using first i coin types
Decision: "How many of coin i do | use?”

o Partition Problem:
DPJi][s] = "can we partition items 1..i to sum s?"

Pattern Recognition: Items + resource constraint = DP]i, resource].

3) Bounded Resources

Summary

Summary

Summary: DP Patterns

Archetype ‘ Key Feature ‘ Subproblem DPJ..] ‘ Dependency
Sequential Decision | Valid Extension DP[i] = Sol. ending at i | Local: DP[i — 1]
(Order matters) (Kadane, LAS) Global: All j < i
Sequence Alignment | Alignment DPIi][j] = Sol. for DP[i —1][j], DP[i[j — 1],
(2 sequences) (LCsS, Edit Dist.) prefixes A[1..i], B[1..j] DP[i —1][j — 1]

‘ DPJi][k] = Sol. using DP[i — 1][k].

Bounded Resource Resource Mgmt.
(Knapsack, Subset Sum)

(Subset selection) items 1..7, resource k DP[i — 1][k — cost;]

The Universal Question:

"What information do | need about smaller subproblems to make an optimal decision for the
current problem?”

Your subproblem parameters should capture exactly that information.

Summary

Additional Practice

Additional Practice

DP - Partition Problem (1/3)

Description:
Given a non-empty array of positive integers A, determine if the array can be partitioned into
two subsets such that the sum of elements in both subsets is equal.

Example:
e Input: A=1]1,5, 11, 5]
Output: true

Explanation: The array can be partitioned as 1, 5, 5 (sum=11) and 11 (sum=11).
Input: A =11, 2, 3, 5]
Output: false

Explanation: The total sum is 11 (odd), so it's impossible to partition into two equal
halves.

Additional Practice

DP - Partition Problem (2/3)

Compute the solution using bottom-up dynamic programming and state the run time of your algorithm.

Address the following aspects in your solution:

© Definition of the DP table: What are the dimensions of the table DP [. . .]? What is the
meaning of each entry?

© Computation of an entry: How can an entry be computed from the values of other entries?
Specify the base cases, i.e., the entries that do not depend on others.

see next page for cont.

Additional Practice

DP - Partition Problem (3/3)

© Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

© Extracting the solution: How can the final solution be extracted once the table has been filled?

@ Runtime: What is the run time of your solution?

When you’re done, try implementing your solution on CodeExpert!

Additional Practice

Peer Grading

Peer Grading

Peer-Grading Exercise

This week's peer-grading exercise is Exercise 6.3
Please follow the usual process:

o Grade the assigned group's submission.

@ Give constructive feedback and upload your feedback to Moodle by 23.59 tonight, at the
latest.

@ Contact me if you don't receive a submission to grade.

Peer Grading

	Mini-Quiz
	Assignment
	Recap
	1) Sequence Alignment
	2) Sequential Decision
	3) Bounded Resources
	Summary
	Additional Practice
	Peer Grading

