Week 7

DP: LAS, Subset Sum, Knapsack

Thorben Klabunde

www.th-kl.ch

November 3, 2025

Agenda

- Mini-Quiz
- Assignment
- Recap
- 4 1) Sequence Alignment
- (5) 2) Sequential Decision
- 6 3) Bounded Resources
- Summary
- Additional Practice
- Peer Grading

Mini-Quiz

In a linked list data structure L, suppose you have a pointer to an object o in L. Then inserting a key k into the list after o (i.e. $\mathtt{insertAfter}(o,k,L)$) takes O(1) time.

- True ②
- False

Since we have a pointer to the object o, we can replace o's subsequent key with k and then reattach the rest of the list to be after k. Since we are just moving around a couple pointer values, this all takes O(1) time.

The correct answer is 'True'.

Let T be a 2-3 tree with depth 4. Let x be the number of leaves. It is possible for x to be equal to:

True	False		
×	⊚⊘	5	⊘
×	●⊘	10	⊘
⊚⊘	×	20	⊘
⊚⊘	×	50	⊘
×	⊚⊘	100	⊘
×	⊚⊘	200	⊘
×	⊚⊘	1000	⊘

If every node has 2 children, then a 2-3 tree of depth 4 has $2^4=16$, this is the minimum number of leaves. If every node has 3 children then depth 4 means we have $3^4=81$ leaves, this is the maximum number of leaves. Its then possible to achieve every number in this range by having a mix of degree 2 and degree 3 nodes.

5: False

10: False

20: True

50: True

100: False

200: False

1000: False

Let B1, B2 be two leaves in a 2-3-tree. If an insert operation increases the depth of B1, then it also increases the depth of B2.

- True < </p>
- False

All leaves must be the same depth, so increasing the depth of one leaf must increase the others too.

The correct answer is 'True'.

We can find the maximum key of a 2-3 tree with n leaves in time $O(\log(n))$.

- True ❷
- False

We can keep going down the right subtree to get the maximum key, which will be of depth $\log(n)$.

The correct answer is 'True'.

Consider the subset sum problem with input $A[1 \dots n]$ and target value b, where the subproblem T(i,s) denotes whether s is a subset sum of $A[1 \dots i]$. Fill in X such that the recursion is $T(i,s) = T(i-1,s) \vee T(i-1,X)$ (for $2 \leq i \leq n$). If X < 0 then T(i-1,X) is considered to be false.

$$igcup$$
 a. $X=A[i-1]$

$$lacksquare$$
 b. $X=s-A[i]$

$$\circ$$
 c. $X = s - b$

d.
$$X=b$$

Your answer is correct.

Achieving a subset sum of s can be done in two ways corresponding to the two conditions. Either we can make it by not including the element at index i, which represents T(i-1,s). OR we include the element at index i in which case we need to check that we can make a subset sum of s-A[i] with elements up to index i-1, corresponding to T(i-1,s-A[i]).

The correct answer is: X = s - A[i]

There is a known algorithm which solves subset sum in time $O(n^3)$.

- True
- False ②

It was discussed in lecture that if there was a polynomial time algorithm for subset sum, then P=NP. This is a major unknown open problem.

The correct answer is 'False'.

Consider the knapsack problem with weights w_i , profits p_i and weight limit W. Let $P=p_1+\ldots+p_n$. Which of the following statements are true/false:

True	False		
		There is an algorithm solving the problem in time $O(nW)$.	
		There is an algorithm solving the problem in time $O(nP)$.	

Both are true. For O(nP) we saw in lecture a 2 dimensional DP with table entries G[i,p]= the minimum weight needed to achieve profit at least p with items $1 \dots i$.

For O(nW) we saw in lecture a 2 dimensional DP with table entries P[i,w]= maximum profit achievable with weight w with items $1\dots i$.

There is an algorithm solving the problem in time O(nW).

: True

There is an algorithm solving the problem in time O(nP).

: True

There is an algorithm for knapsack which computes in polynomial time a solution which is at least half as good as the optimal solution.

- True ❷
- False

In lecture we saw a polynomial algorithm that computes a $(1-\epsilon)$ -approximation to the knapsack problem in time $O(n^3\epsilon^{-1})$. Taking $\epsilon=1/2$, we get a 1/2-approximation which runs in time $O(2n^3)$ which is polynomial in n.

The correct answer is 'True'.

For the knapsack problem, let OPT be the optimal solution for the original profits p_i and \widetilde{OPT} the optimal solution for the rounded profits \tilde{p}_i . Which of the following is always true?

- lacksquare a. $\sum_{i\in\widetilde{OPT}} ilde{p}_i\geq\sum_{i\in OPT} ilde{p}_i$. lacksquare
 - b. $\sum_{i \in \widetilde{OPT}} ilde{p}_i = \sum_{i \in OPT} ilde{p}_i$.
- c. $\sum_{i \in \widetilde{OPT}} ilde{p}_i \leq \sum_{i \in OPT} ilde{p}_i$.
- d. None of the above.

Your answer is correct.

Note that $\sum_{i\in \widetilde{OPT}} \tilde{p}_i$ is the optimal (maximal profit) choice of elements for the profits \tilde{p}_i which satisfy the weight limit. So as OPT also satisfies the weight limit, we know that the profit from $\sum_{i\in OPT} \tilde{p}_i$ cannot be greater.

The correct answer is: $\sum_{i \in \widetilde{OPT}} \tilde{p}_i \geq \sum_{i \in OPT} \tilde{p}_i$.

Let L be a longest ascending subsequence of $A[1\dots i]$ and L' be a longest ascending subsequence of $A[1\dots i+1]$. Then L' is either identical to L, or L' is obtained from L by adding A[i+1] at the end.

- True
- False ②

Consider A=[1,3,2], then for $A[1\dots 2]$ there is only 1 longest ascending subsequence [1,3]. But for $A[1\dots 3]$ there is both [1,3] and [1,2] and note that the second is not [1,3] or some addition to that subsequence.

The correct answer is 'False'.

Feedback Assignment 5

Common points from last week's assignment:

- Function Calls: Well done! Generally just small remarks: Be careful with notation (redefining already defined terms, writing ill-defined terms)
- **Bubble Sort Proof:** Like mentioned last week, make sure that you explain why/how the algorithm achieves the correct state. Ensure that your invariant captures all required information to allow the final conclusion. E.g., the given algorithm only had n-1 iterations, so we need to add the additional information that the last j elements are the largest elements to ensure correct ordering of the first element at the end.

Remember to check the detailed feedback on Moodle! Reach out if you have any questions regarding the corrections.

Assignment 6

- We will have a closer look at Ex. 6.3 and Ex. 6.4 today.
- The remaining exercises are covered in detail in the master solution. If you have any questions, don't hesitate to reach out!

Ex. 6.3

Exercise 6.3 Introduction to dynamic programming (1 point).

Consider the recurrence

$$A_1=1\\ A_2=2\\ A_3=3\\ A_4=4\\ A_n=A_{n-1}+A_{n-3}+2A_{n-4} \text{ for } n\geq 5.$$

(a) Provide a recursive function (using pseudo code) that computes A_n for $n\in\mathbb{N}$. You do not have to argue correctness.

Solution:

Algorithm 1 A(n)

```
 \begin{array}{c} \textbf{if} \ n \leq 4 \ \textbf{then} \\ \textbf{return} \ n \\ \textbf{else} \end{array}
```

return
$$A(n-1) + A(n-3) + 2A(n-4)$$

Ex. 6.3b)

(b) Lower bound the run time of your recursion from (a) by $\Omega(C^n)$ for some constant C>1.

Informal sketch:

Let T(n) be the number of operations of a coll to A(n) with new and assume 124.

Notice that that each recursive cell performs a constact number of operations and we get clover to the base cases with each cell. We can thus assume that T(n) is monotonically increasing.

Now W.1.o.g. assume that n is divisible by 4 (take the next smaller multiple of 4 otherwise).

Then:
$$T(n) = T(n-1) + T(n-3) + 2T(n-4) \ge 4 \cdot T(n-4) \ge ... \ge 4 \cdot T(4) \ge \Omega(c^n)$$

for $c = 4^{1/4}$

Make this argument sormal by proving T(n) > 44 4 by induction (see Mester solution).

Ex. 6.3c)

(c) Improve the run time of your algorithm using memoization. Provide pseudo code of the improved algorithm and analyze its run time.

Ex. 6.3c)

Algorithm 2 Compute A_n using memoization memory $\leftarrow n$ -dimensional array filled with (-1)s function A_MEM(n) if memory $[n] \neq -1$ then \triangleright If A_n is already computed. return memory [n] if $n \le 4$ then $memory[n] \leftarrow n$ return nelse $A_n \leftarrow \texttt{A_Mem}(n-1) + \texttt{A_Mem}(n-3) + 2\texttt{A_Mem}(n-4)$ $memory[n] \leftarrow A_n$

return A_n

Ex. 6.4

Exercise 6.4 Coin Conversion (1 point).

Suppose you live in a country where the transactions between people are carried out by exchanging coins denominated in dollars. The country uses coins with k different values, where the smallest coin has value of $b_1 = 1$ dollar, while other coins have values of b_2, b_3, \ldots, b_k dollars. You received a bill for n dollars and want to pay it exactly using the smallest number of coins. Assuming you have an unlimited supply of each type of coin, define OPT to be the minimum number of coins you need to pay exactly n dollars. Your task is to calculate OPT. All values n, k, b_1, \ldots, b_k are positive integers.

Example: n=17, k=3 and b=[1,9,6], then OPT =4 because 17 can be obtained via 4 coins as 1+1+9+6. No way to obtain 17 with three or less coins exists.

(a) Consider the pseudocode of the following algorithm that "tries" to compute OPT.

Algorithm 3

- 1: Input: integers n, k and an array $b = [1 = b_1, b_2, b_3, \dots, b_k]$.
- 2:3: counter ← 0
- 4: while n > 0 do
- Let b[i] be the value of the largest coin b[i] such that $b[i] \leq n$.
- 6: $n \leftarrow n b[i]$.
- 7: $counter \leftarrow counter + 1$
- 8: Print("min. number of required coins = ", counter)

Algorithm 3 does not always produce the correct output. Show an example where the above algorithms fails, i.e., when the output does not match OPT. Specify what are the values of n, k, b, what is OPT and what does Algorithm 3 report.

Note, the gready approach does not guarantee an optimal solution here

Counterexemple:

Greedy approach!

Ex. 6.4b)

(b) Consider the pseudocode below. Provide an upper bound in O notation that bounds the time it takes a compute f[n] (it should be given in terms of n and k). Give a short high-level explanation of your answer. For full points your upper bound should be tight (but you do not have to prove its tightness).

Algorithm 4

```
1: Input: integers n, k. Array b = [1 = b_1, b_2, b_3, \dots, b_k].
 2:
 3: Let f[1 \dots n] be an array of integers.
 4: f[0] \leftarrow 0
                                                                                           ▶ Terminating condition.
 5: for N \leftarrow 1 \dots n do
 6: f[N] \leftarrow \infty
                                                    \triangleright At first, we need \infty coins. We try to improve upon that.
     for i \leftarrow 1 \dots k do
      if b[i] \leq N then
      val \leftarrow 1 + f[N - b[i]]
                                                          \triangleright Use coin b[i], it remains to optimally pay N-b[i].
                f[N] \leftarrow \min(f[N], val)
11: Print(f[n])
```

Ex. 6.4d)

(d) Rewrite Algorithm 4 to be recursive and use memoization. The running time and correctness should not be affected.

Notice that Alg. 4 solves the susproblem: S(i) = Min. number of coins to make sun of i.

```
Algorithm 4

1: Input: integers n, k. Array b = [1 = b_1, b_2, b_3, \dots, b_k].

2:

3: Let f[1 \dots n] be an array of integers.

4: f[0] \leftarrow 0 \triangleright Terminating condition.

5: for N \leftarrow 1 \dots n do

6: f[N] \leftarrow \infty \triangleright At first, we need \infty coins. We try to improve upon that.

7: for i \leftarrow 1 \dots k do

8: if b[i] \leq N then

9: val \leftarrow 1 + f[N - b[i]] \triangleright Use coin b[i], it remains to optimally pay N - b[i].

10: f[N] \leftarrow \min(f[N], val)

11: Print(f[n])
```

Runtime: There are a different states to be computed, each in O(h) due to the inner sor-loop.

Ex. 6.4c)

(c) Let $\mathrm{OPT}(N)$ be the answer (min. number of coins needed) when n=N. Algorithm 4 (correctly) computes a function f[N] that is equal to $\mathrm{OPT}(N)$. Formally prove why this is the case, i.e., why f[N] = OPT(N).

Hint: Use induction to prove the invariant f[n] = OPT(n). Assume the claim holds for all values of $n \in \{1, 2, \dots, N-1\}$. Then show the same holds for n = N.

Ex. 6.4c)

(c) Let OPT(N) be the answer (min. number of coins needed) when n = N. Algorithm 4 (correctly) computes a function f[N] that is equal to OPT(N). Formally prove why this is the case, i.e., why f[N] = OPT(N).

Hint: Use induction to prove the invariant f[n] = OPT(n). Assume the claim holds for all values of $n \in \{1, 2, \dots, N-1\}$. Then show the same holds for n = N.

Sketch:

We proceed by induction on n.

B.C.: /of n= O. Notice that f[0] = 0 = OPT(0) and the BC Enviolly helds

I.H.: Assume for some NEM and all ne {1,..., N-1} that f[M] = OPT(n).

Co careful, here we require a scrong induction!

Ex. 6.4c)

(c) Let OPT(N) be the answer (min. number of coins needed) when n = N. Algorithm 4 (correctly) computes a function f[N] that is equal to OPT(N). Formally prove why this is the case, i.e., why f[N] = OPT(N).

Hint: Use induction to prove the invariant f[n] = OPT(n). Assume the claim holds for all values of $n \in \{1, 2, \dots, N-1\}$. Then show the same holds for n = N.

I.S.: It remains to prove that f(N) = 0PT(N).

Notice that the inner for -loop naintains a minimum over the set [1+5[N-6.] | 15 is k s.t. N-6: >0]

=> 1+ 5[N-6] > 5[N] , for old i [[]

Suppose for soke of contradiction that ...

- : (U) J(N) > OPT(N):
 - => 1+5[N-(:) > OPT(N), for all ie(h)

But closely OPT(N) = OPT(N-6)+1, for she iclk]. Herce, S[N-6]> OPT(N-6) for some iclk]. a confradiction to our I.H. Huce J(N) & OPT(N).

- (2) 5[N] < OPT(N):
- => 1+ f[n-6.7 < OPT(N), for some ie[k]
- => OPT(N-6)= S[N-6] < OPT(N)+1, Sor some ie[k] => OPT(N) is not optimal, a contradiction. It sollows +Lat , T(N) = OPT(N).

Ex. 6.4d)

Algorithm 5

```
1: Input: integers n, k. Array b = [1 = b_1, b_2, b_3, \dots, b_k].
 2: Global variable: memo[1 \dots n], initialized to -1.
 3:
4: function f(N)
        if N=0 then return 0
        if memo[N] \neq -1 then return memo[N]
        solution \leftarrow \infty
        for i \leftarrow 1 \dots k do
           if b[i] \leq N then
                val \leftarrow 1 + f(N - b[i])
                                                           \triangleright Use coin b_i, it remains to optimally pay x - b_i.
10:
                solution \leftarrow \min(solution, val)
                                                                       Check if this is the best seen so far?
11:
        memo[N] \leftarrow solution
12:
        return solution
13:
14:
15: Print("OPT = ", f(n))
```

Ex. 6.4d)

Again, we write our code under the assumption that we have the solution for N-6; , Fer old is [K], which is returned by the coll to f(N-6;).

```
Algorithm 5
  1: Input: integers n, k. Array b = [1 = b_1, b_2, b_3, \dots, b_k].
  2: Global variable: memo[1 \dots n], initialized to -1.
  3:
  4: function f(N)
         if N=0 then return 0
        if memo[N] \neq -1 then return memo[N]
        solution \leftarrow \infty
        for i \leftarrow 1 \dots k do
            if b[i] \leq N then
                 val \leftarrow 1 + f(N - b[i])
                                                            \triangleright Use coin b_i, it remains to optimally pay x - b_i.
10:
                 solution \leftarrow \min(solution, val)
                                                                         ▷ Check if this is the best seen so far?
11:
12:
        memo[N] \leftarrow solution
        return solution
13:
14:
15: Print("OPT = ", f(n))
```


Recall - The DP "Recipe":

A general plan for solving DP problems:

- Define a suitable subproblem.
 - What is the structure of the solution? What are the parameters? (e.g., DP[i], DP[i][j])
- Establish a recurrence relation.
 - How does the solution to a problem depend on smaller subproblems?
 - Define base cases!
- Ompute the solutions (Bottom-Up).
 - In what order must the DP table be filled?
- Assemble the solutions.
 - Where in the table is the final solution?
- Analyze correctness and runtime.

Why Look for Patterns?

As I mentioned last week, DP is about analyzing structure.

- The "trick" to DP is **finding the right subproblem**.
- Different problem structures lead to different kinds of subproblems.
- We aren't memorizing solutions, we are learning patterns of thought.
- By comparing the problems, we can identify "archetypes" that help narrow down the search space.

Key Insight

The structure of your subproblem should match the **decision structure** of your problem.

- What choices do you make at each step?
- What information do you need to make those choices?

Our DP Problem "Archetypes"

Most DP problems we've seen fall into one of three main families:

Sequence Alignment / "Prefix Comparison" - Last Week

- Core Idea: Compare two sequences, A and B.
- **Subproblem:** DP[i][j] = Solution for prefixes A[1..i] and B[1..j].
- Examples: Longest Common Subsequence, Edit Distance.

Sequential Decision / "Ending At" -

Last Week

- Core Idea: Build an optimal structure in a single sequence where order matters.
- Subproblem: DP[i] =
 Solution ending at index i (or reaching i).
- Examples: LAS, Jump Game, Max Subarray.

Bounded Resource / "Take It or Leave It"

- Core Idea: Select an optimal subset of items with a constraint.
- **Subproblem:** DP[i][k] = Solution using items 1..*i* with resource *k*.
- Examples: 0/1 Knapsack, Subset Sum.

Connecting to This Week's Problems

Let's map this week's problems to the archetypes:

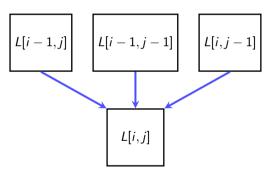
- Longest Ascending Subsequence: Archetype 2 (Sequential Decision)
 - Single array A[1..n] with structural rule: ascending order
 - Decision: "Which valid predecessor i < i (where A[i] < A[i]) extends best?"
- **Subset Sum:** Archetype 3 (Bounded Resource)
 - Items A[1..n] + target sum constraint b
 - Binary choice: Take A[i] or leave it.
- **0/1 Knapsack:** Archetype 3 (Bounded Resource)
 - Items with weights/profits + capacity constraint W
 - Binary choice: Take item i (and pay w_i) or leave it.

Archetype 1: Sequence Alignment Problems (Last Week)

- Archetype: Longest Common Subsequence
- Key Feature: Alignment. Find the best way to match, skip, or transform elements from two sequences.
- Subproblem: L[i][j] = LCS of A[1..i] andB[1..i].
- **Key Idea**: The solution for L[i][j] depends only on decisions about the last characters. A[i] and B[i].
- Recurrence:

$$L[i,j] = \begin{cases} 1 + L[i-1,j-1] & \text{if } a_i = b_j \\ \max(L[i-1,j], L[i,j-1]) & \text{if } a_i \neq b_j \end{cases}$$

Depends only on its 3 neighbors



Archetype 1: Why 2D?

Intuition for the Subproblem:

- We cannot solve the problem without knowing our position in both sequences.
- This forces us to use a 2D state: DP[i][j] = "Solution for A[1..i] and B[1..i]".

Why 1D Fails for LCS

Try: L[i] = LCS length for A[1..i] and B[1..i]

Problem: The optimal LCS might use different positions from each string:

E.g., A = "TIGER", B = "ZIEGE"

Optimal LCS "IGE" uses A[2,3,5] and B[2,3,4]

We lose crucial information about where we are in each sequence independently.

The Core Question: "To get DP[i][j], what do we do with A[i] and B[j]?"

Archetype 1: Related Problems

Problems following this pattern:

Edit Distance:

$$\mathit{DP}[i][j] = \mathsf{min}$$
 operations to transform $\mathit{A}[1..i] \to \mathit{B}[1..j]$

Decision: "Match? Replace? Insert? Delete?"

Recurrence:
$$ED[i,j] = \min \begin{cases} ED[i-1,j] + 1 \\ ED[i,j-1] + 1 \\ ED[i-1,j-1] + [A[i] \neq B[j]] \end{cases}$$

Longest Common Substring (contiguous):

DP[i][i] = length of longest common substring ending at i, j

Decision: "Does A[i] = B[i]? If yes, extend; if no, reset to 0."

Pattern Recognition: Two sequences + element-by-element decisions $\implies DP[i][i]$ for prefixes.

Archetype 2: Sequential Decision Problems

Core Pattern

Process elements one at a time in a sequence. Make decisions based on previous elements with order-dependent rules.

Key Insight: This archetype splits into two subpatterns depending on whether the solution requires contiguous or non-contiguous elements:

- Contiguous/Local Pattern: Solution requires adjacent/recent elements only
 - Can often decide using only DP[i-1] or a small local window
 - Leads to O(n) or $O(n \log n)$ solutions
- Non-Contiguous/Global Pattern: Solution can skip elements freely
 - Must consider all valid predecessors i < i
 - Naive approach: $O(n^2)$, but often optimizable!

Archetype 2a: Contiguous/Local Pattern

Canonical Example: Maximum Subarray Sum

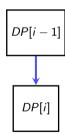
- Subproblem: $DP[i] = \max \text{ sum of subarray ending at } i$
- Key Feature: Subarrays must be contiguous
- **Decision:** Only two choices at *i*:
 - **1** Extend previous subarray: DP[i-1] + A[i]
 - 2 Start fresh at i: A[i]
- Recurrence:

$$DP[i] = \max(DP[i-1] + A[i], A[i])$$

• Runtime: O(n) — only need previous element!

Why Local? The contiguity constraint means we can only extend the immediately previous subarray or start over.

Only depends on previous element



Archetype 2b: Non-Contiguous/Global Pattern (Naive)

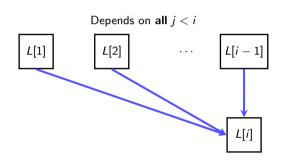
Canonical Example: Longest Ascending Subsequence (LAS)

- Subproblem: L[i] = length of LAS ending at i
- **Key Feature**: Subsequences can **skip** elements
- **Decision:** Must check *all* valid predecessors:
 - Which i < i has A[i] < A[i]?
 - Which gives best L[i]?
- Recurrence:

$$L[i] = 1 + \max(\{L[j] \mid j < i, A[j] < A[i]\} \cup \{0\})$$

• Runtime: $O(n^2)$ — must check all i < i

Why Global? We can skip elements freely, so must consider all possible predecessors that satisfy A[i] < A[i].



Archetype 2b: Optimizing Non-Contiguous Problems

The $O(n^2)$ solution is often just the starting point!

We have seen two problems where we can define the subproblem in a way as to narrow down the viable candidates and make them efficiently searchable.

Jump Game:

- Instead of $DP[i] = "\min jumps to reach i"$ (requires checking all j < i)
- Use DP[k] = "farthest position reachable in k jumps"
- Only process each position once $\implies O(n)$

Longest Ascending Subsequence:

- The naive approach checks all j < i where A[j] < A[i]
- Key insight: We only care about the best (longest) subsequence ending with each possible value
- Use binary search on (smallest possible) tail values $\implies O(n \log n)$
- Maintains: "smallest tail value for each subsequence length"

The archetype helps you find the $O(n^2)$ solution; optimization requires deeper problem-specific insight!

Archetype 2: Related Problems by Subpattern

Contiguous/Local (O(n)):

- Max Subarray Sum: $DP[i] = \max(DP[i-1] + A[i], A[i])$
- Min-Cost Stairs (last week): DP[i] = $\min(DP[i-1]+c[i-1],DP[i-2]+c[i-2])$ jump from one or two steps down at cost C_i

Non-Contiguous/Global:

- LAS (naive): $O(n^2)$ $DP[i] = 1 + \max\{DP[i] \mid A[i] < A[i]\}$ Optimized: $O(n \log n)$ with binary search
- Jump Game (naive): $O(n^2)$ $DP[i] = 1 + \min\{DP[i] \mid i + A[i] > i\}$ Optimized: O(n) with subproblem change
- Max Sum Asc. Subseq.: $O(n^2)$ Similar structure to LAS

Pattern Recognition: Contiguous \rightarrow local dependency; Non-contiguous \rightarrow global dependency (but often optimizable).

Deep Dive: Longest Ascending Subsequence (LAS)

Definition 2.11 (LAS)

Given an array A[1..n]. We seek the **length** of a longest subsequence of A whose elements are ascending.

```
Example: A = (2, 13, 17, 9, 11, 4, 78, 28, 15, 25, 99)
```

- Ascending subsequence: $(2, 13, 17, 78, 99) \implies \text{Length } 5$
- Longest ascending subsequence (LAS): $(2, 9, 11, 15, 25, 99) \implies \text{Length } 6$

LAS: Attempt 1 (Fails)

- **Subproblem:** LAT(i) = Length of the LAS in array <math>A[1..i].
- **Problem:** The solution for A[1..i-1] doesn't necessarily help us find the solution for A[1..i]. **Example:** A = (1, 2, 5, 3, 4)
 - LAT(3) for (1, 2, 5) is 3. (Sequence: (1, 2, 5))
 - LAT(4) for (1, 2, 5, 3) is 3. (Sequence: (1, 2, 5) or (1, 2, 3))
 - LAT(5) for (1, 2, 5, 3, 4) is 4. (Sequence: (1, 2, 3, 4))

We cannot simply compute LAT(5) from LAT(4)!

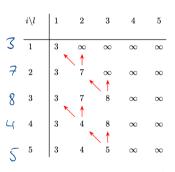
• Realization: We need to remember more than just the length. The ending values of the subsequences are important.

LAS: Better DP $(O(n^2))$

- Idea: For each possible length I, we store the smallest possible ending element of an AS of that length.
- **Subproblem:** DP[i][I] := the smallest possible ending element of an AS of length I in the range A[1..i].
- **Recurrence:** To compute DP[i][I], we consider A[i]:
 - **1** We don't use A[i], instead use DP[i-1][I].
 - **We use** A[i]: We can append A[i] to an AS of length I-1ending in DP[i-1][l-1].

$$DP[i][l] = \min\{DP[i-1][l]\}, \quad A[i] \text{ (if } A[i] > DP[i-1][l-1])\}$$

• **Runtime:** We fill an $n \times n$ table. Each cell takes O(1). \implies O(n²).



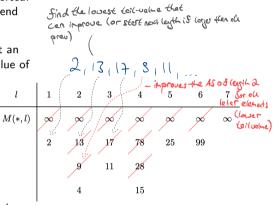
Beispiel der Tabelle M(i, l) mit A = [3, 7, 8, 4, 5]

LAS: The $O(n \log n)$ Solution

- **Observation 1:** The rows of the DP[i][...]) table are sorted: DP[i][I] < DP[i][I+1] (since DP[i][I] is the smallest end value).
- Algorithm: We don't need the whole $O(n^2)$ table, just an array DP[1..n], where DP[I] stores the smallest end value of an AS of length I found so far.

$$T[1..n] \leftarrow \infty, \ T[0] \leftarrow -\infty$$
 for $i \leftarrow 1$ to n do Find I (with binary search) such that $T[I-1] < A[i] \le T[I]$ $T[I] \leftarrow A[i]$ end for return largest I such that $T[I] < \infty$

• Runtime: *n* iterations. Each iteration: one binary search $(O(\log n)). \implies O(n \log n).$



Archetype 3: Bounded Resource Problems

- **Archetype:** 0/1 Knapsack
- Key Feature: Resource Management. We have a limit and must make binary choices. Order doesn't matter.
- Subproblem: P[i][w] = Max profit using items 1..i with capacity w.
- **Key Idea:** For item i, make a single binary choice:
 - **1 Don't Take:** P[i-1][w]
 - **2** Take: $p_i + P[i-1][w-w_i]$
- Recurrence:

$$P[i, w] = \max(P[i-1, w], p_i + P[i-1, w-w_i])$$

Depends only on the **row above** (items 1..i - 1) Don't Take Take

Archetype 3: Why 2D?

Intuition for the Subproblem:

- We need to track two things:
 - Which items have we *considered*? (the *i* in DP[i][k])
 - ② How much resource have we used? (the k in DP[i][k])

Why 1D Fails for Knapsack

Try: $P[i] = \max \text{ profit using items } 1..i$

Problem: We don't know how much capacity was used!

If we took high-profit items early, we might have no capacity left. But maybe skipping those items leaves room for a better combination later.

We need to track remaining capacity at each step.

The Core Question: "For item i, do we 'Take It' or 'Leave It'?"

Problem: Subset Sum Problem

Definition 2.4 (Subset Sum)

Given: n natural numbers A[1], ..., A[n] and a target number b.

Wanted: A subset $I \subseteq \{1, ..., n\}$ such that $\sum_{i \in I} A[i] = b$.

Example:

$$A = (5, 3, 10, 7, 3, 1), b = 9.$$

•
$$I = \{1, 5, 6\} \implies A[1] + A[5] + A[6] = 5 + 3 + 1 = 9$$
. Answer: Yes.

$$A = (5, 3, 10, 7, 3, 1), b = 2.$$

No subset sums to 2. Answer: No.

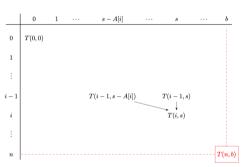
Naive Approach: Try all 2^n subsets \implies Exponential!

Subset Sum: The DP Solution

- **Subproblem:** T(i, s) := (boolean) "Is it possible to achieve the sum s with a subset of A[1..i]?"
- Recurrence: To compute T(i, s), we have two choices for the element A[i]:
 - **We do not use** A[i]: We must have already achieved sum s with A[1..i-1]. $\Longrightarrow T(i-1,s)$
 - **We use** A[i]: We must have achieved the remaining sum s - A[i] with A[1..i-1]. $\Longrightarrow T(i-1,s-A[i])$

$$T(i,s) = T(i-1,s) \quad \lor \quad T(i-1,s-A[i])$$

- Base Cases:
 - T(0,0) = 1 (Sum 0 is possible with 0 elements).
 - T(0, s) = 0 for s > 0.
- Solution: T(n,b).



Subset Sum: Analysis

Runtime

- Computation: Fill an $(n+1) \times (b+1)$ table, row by row.
 - Each cell T(i, s) only depends on the previous row (i 1).

Each cell takes O(1) time.

$$\implies O(n \cdot b)$$

But notice that the length of the input for value b is $\log b!$

Pseudo-polynomial Runtime

- The runtime is polynomial in n and the value b.
- It is **not** polynomial in the *input length* (which is $n + \log b$ bits).
- If $b = 2^n$, the runtime is $\Theta(n \cdot 2^n) \implies$ exponential!

Problem: Knapsack Problem (0/1 Knapsack)

Definition 2.6 (Knapsack)

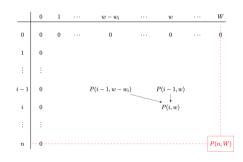
Given: n items, each with weight w_i and profit p_i . A knapsack with capacity W.

Wanted: A subset $I \subseteq \{1, ..., n\}$ such that $\sum_{i \in I} w_i \leq W$ and $\sum_{i \in I} p_i$ is **maximal**.

Again: Greedy strategies (e.g., "highest profit first", "best p_i/w_i ratio") **do not work** for the 0/1 Knapsack problem.

Knapsack: DP Solution 1 (O(nW))

- Idea: Very similar to Subset Sum, but instead of 'Yes/No', we ask for the optimal sol.
- Subproblem: DP[i][w] :=the maximum profit one can achieve with a subset of A[1..i] given a weight limit w.
- **Recurrence:** For DP[i][w], two choices for A[i]:
 - We do not take A[i]: Maximum profit is DP[i-1][w].
 - **We take** A[i]and get profit: $p_i + DP[i-1][w-w_i]$. $DP[i][w] = \max\{DP[i-1][w], p_i + DP[i-1][w-w_i]\}$
- Base Case: DP[0][w] = 0 for all w.
- Runtime: $O(n \cdot W)$ (pseudo-polynomial).

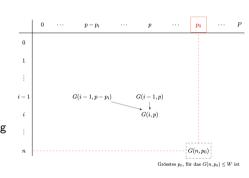


Knapsack: DP Solution 2 (O(nP))

- Idea: Swap the roles of weight and profit.
- Subproblem: G(i, p) := the minimum weight needed to achieve exactly the profit p with a subset of A[1..i]. $(DP[i][p] = \infty$ if p is not reachable).
- **Recurrence:** For DP[i][p], two choices for A[i]:
 - We do not take A[i]: Min. weight is DP[i-1][p].
 - ② We take A[i] (if $p_i < p$): Weight is w_i plus the min. weight to get the remaining profit $p - p_i$ with A[1..i - 1]: $w_i + DP[i - 1][p - p_i]$.

$$DP[i][p] = \min\{DP[i-1][p], \quad w_i + DP[i-1][p-p_i]\}$$

- Base Cases: DP[0][0] = 0, $DP[0][p] = \infty$ for p > 0.
- **Solution:** Find $\max\{p_0 \mid DP[n][p_0] \leq W\}$.
- **Runtime:** $O(n \cdot P)$ (where $P = \sum p_i$).



The Problem with Knapsack

Subset Sum and Knapsack are **NP-complete**.

This means we don't expect a truly polynomial algorithm (unless P=NP (don't try to prove it...)).

- Our O(nW) and O(nP) solutions are **pseudo-polynomial**.
- If W and P are huge? (e.g., $W, P > 2^n$), both DP algorithms would be exponential!
- **New Idea:** What if an *almost* optimal solution is good enough?
- Goal: A $(1-\epsilon)$ -approximation algorithm that runs in time poly $(n,1/\epsilon)$.

FPTAS: The Idea

The O(nP) algorithm is slow because P (the maximum profit) can be large.

The Trick: Round the profits!

If we divide all profits by K and round, the new maximum profit $P' \approx P/K$.

 \implies The O(nP') algorithm is then O(nP/K) fast.

Trade-off:

- Large K: Fast runtime, but inaccurate solution (lots of rounding error).
- Small K: Slow runtime, but accurate solution.
- **Goal:** Choose K "just right" so that the error is $\leq \epsilon \cdot P_{OPT}$ and the runtime remains $poly(n, 1/\epsilon)$.

FPTAS: Runtime

Let $\epsilon > 0$ be our desired approximation error (e.g., $\epsilon = 0.1$).

- ② Set the scaling factor $K := \frac{\epsilon \cdot p_{max}}{n}$.
- **1** Create new, scaled profits: $\overline{p}_i := K \cdot |\frac{p_i}{k}|$.
- Solve the Knapsack problem with weights w_i and profits \overline{p}_i .
- **Solution** Seturn the found subset \overline{OPT} as the solution to the original problem.

Runtime

The runtime is $O(\frac{n \cdot \overline{P}}{K})$, since we only need to fill-in every k-th column in the DP-table.

Then since $\overline{P} = \sum_{i=1}^{n} \overline{p_i} \le n \cdot p_{max}$, the runtime is:

$$O(\frac{n\overline{P}}{K}) \le O(\frac{n(n \cdot \overline{P}_{max})}{K}) = O(\frac{n^2 P_{max}}{\epsilon P_{max}/n}) = O(n^3/\epsilon)$$

This is a Fully Polynomial Time Approximation Scheme (FPTAS).

FPTAS: The Algorithm

Let $\epsilon > 0$ be our desired approximation error (e.g., $\epsilon = 0.1$).

Quality

The solution \overline{OPT} has a profit $p(\overline{OPT}) \geq (1 - \epsilon) \cdot p(\overline{OPT})$.

Let
$$\overline{P_i} = K \cdot \frac{P_i}{K} \cdot \frac{P_i}{K} \cdot \frac{P_i}{P_i} = \text{approx. solution}$$
, $OPT = \text{optimel sol}$.

Notice: Pi-K = Pi = Pi = Phox = Por

(1) $\overline{P_i} = \bigcup_{k=1}^{p_i} K$, i.e., rounded down to the next multiple of K. Herce $\overline{P_i} - \overline{P_i} \leq K$ (rounding can course a diff of of most K.

It Sollows:

Archetype 3: Related Problems

Problems following this pattern:

Subset Sum:

DP[i][s] = "can we make sum s using items 1..i?" (boolean) Decision: "Include A[i] or not?" Recurrence: $T[i, s] = T[i-1, s] \vee T[i-1, s-A[i]]$

Coin Change:

 $DP[i][v] = \min \text{ coins to make value } v \text{ using first } i \text{ coin types}$ Decision: "How many of coin *i* do I use?"

Partition Problem:

DP[i][s] = "can we partition items 1..i to sum s?"

Pattern Recognition: Items + resource constraint $\implies DP[i]$, resource].

Summary: DP Patterns

Archetype	Key Feature	Subproblem DP[]	Dependency
Sequential Decision (Order matters)	Valid Extension (Kadane, LAS)	DP[i] = Sol. ending at i	Local: $DP[i-1]$ Global: All $j < i$
Sequence Alignment (2 sequences)	Alignment (LCS, Edit Dist.)	DP[i][j] = Sol. for prefixes $A[1i]$, $B[1j]$	$egin{array}{c} DP[i-1][j],\ DP[i][j-1],\ DP[i-1][j-1] \end{array}$
Bounded Resource (Subset selection)	Resource Mgmt. (Knapsack, Subset Sum)	DP[i][k] = Sol. using items 1i, resource k	$egin{aligned} DP[i-1][k],\ DP[i-1][k-cost_i] \end{aligned}$

The Universal Question:

"What information do I need about smaller subproblems to make an optimal decision for the current problem?"

Your subproblem parameters should capture **exactly** that information.

DP - Partition Problem (1/3)

Description:

Given a non-empty array of positive integers A, determine if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal.

Example:

- Input: A = [1, 5, 11, 5]
- Output: true
- Explanation: The array can be partitioned as 1, 5, 5 (sum=11) and 11 (sum=11).
- Input: A = [1, 2, 3, 5]
- Output: false
- Explanation: The total sum is 11 (odd), so it's impossible to partition into two equal halves.

DP - Partition Problem (2/3)

Compute the solution using bottom-up dynamic programming and state the run time of your algorithm.

Address the following aspects in your solution:

Definition of the DP table: What are the dimensions of the table DP [. . .]? What is the meaning of each entry?

Computation of an entry: How can an entry be computed from the values of other entries? Specify the base cases, i.e., the entries that do not depend on others.

see next page for cont.

DP - Partition Problem (3/3)

Calculation order: In which order can entries be computed so that values needed for each entry have been determined in previous steps?

Extracting the solution: How can the final solution be extracted once the table has been filled?

Output Runtime: What is the run time of your solution?

When you're done, try implementing your solution on CodeExpert!

Peer-Grading Exercise

This week's peer-grading exercise is **Exercise 6.3**

Please follow the usual process:

- Grade the assigned group's submission.
- Give constructive feedback and upload your feedback to Moodle by 23.59 tonight, at the latest.
- Contact me if you don't receive a submission to grade.