
Week 7

DP: LAS, Subset Sum, Knapsack

Thorben Klabunde

www.th-kl.ch

November 3, 2025

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

th-kl.ch

Agenda

1 Mini-Quiz

2 Assignment

3 Recap

4 1) Sequence Alignment

5 2) Sequential Decision

6 3) Bounded Resources

7 Summary

8 Additional Practice

9 Peer Grading

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Mini-Quiz

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Q1

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Q2

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Q2

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Q3

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Q4

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Q5

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Q5

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Q6

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Q7

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Q7

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Q8

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Q9

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Q9

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Q10

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Assignment

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Feedback Assignment 5

Common points from last week’s assignment:

Function Calls: Well done! Generally just small remarks: Be careful with notation
(redefining already defined terms, writing ill-defined terms)

Bubble Sort Proof: Like mentioned last week, make sure that you explain why/how the
algorithm achieves the correct state. Ensure that your invariant captures all required
information to allow the final conclusion. E.g., the given algorithm only had n-1 iterations,
so we need to add the additional information that the last j elements are the largest
elements to ensure correct ordering of the first element at the end.

Remember to check the detailed feedback on Moodle! Reach out if you have any questions
regarding the corrections.

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Assignment 6

We will have a closer look at Ex. 6.3 and Ex. 6.4 today.

The remaining exercises are covered in detail in the master solution. If you have any
questions, don’t hesitate to reach out!

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Ex. 6.3

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Ex. 6.3b)

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Informal sketch :

Let The) be the number of operations of a call to Add) with ne and essume

124 .

Notice that that each recursive cell performs a constant number of operations and we get closer to
the Jese cases with each cell

.

We can thusessure that TCM) is monotonically increasing .

Now W
. /
. 0 .g- essure

that n is divisible 32 4 (take the next smaller multiple of 4 otherwise) .
(E-1)

Men : T() = T(n - 1) +T(e -3) + 2+(-4) 4 . T(- 4) =... 24 .

T,I

Make thisergument formal by proving T(a)a14
*

by induction (see master solution) .

Ex. 6.3c)

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Ex. 6.3c)

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Ex. 6.4

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Note , thegreedy approach does
not guarantee an optical solution here .

Counterexample :

Let n = 12 ,
k = 3

,
b= (1 ,

8
, 6)

.

Alg . J returns 4 (S ,
1
,
1
, 1)

but the optimal solution is 2 (6, 6) .

greedy approach !

Ex. 6.4b)

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Ex. 6.4d)

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Notice that Alg . 4 solves the subproblem : Elij = min
. number of coins to make sur of i.

1

Runtime : There area different states to be computed ,
each in O(K) due to the inner for loop .

=>4) in total .

Ex. 6.4c)

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Ex. 6.4c)

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Sketch :

We proceed by induction on 1.

#C.: Let 1 = 0 .
Notice that Flo] = 0 = OPT(O) and the B.C. trivially helds .

#Assume For some NEM and al ne El, ..., N-13 that F(J = OPT(1) .

↳ careful, have were wire a stron induction !

Mobile User

Ex. 6.4c)

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

#: It remains to prove that FIN)
= OPT(N)

.

Notice that the inter for-loop maintains a minimum over the set [1 + EN-5 ;]/lizh S .t . N- 5: =0]
=> It F(N-S;] < E(N)

, for all i(k] .

Suppose for sake of contradiction that ...
(1) F(NJ > OPT(N) :

=> It F(N-Si] < OPTIN) , for al ieCli] .

But clearly OPT(N) = OPTIN-Ji) + 1
,
For some iCh] . Hence, EIN-biJC OPTIN-S;) for some ie[k] ,

a contradiction to our I. H . Hence FIN] < OPT(N) -

(2) F(N] < OPT(N) :

=> I + FIN-S;] < OPTIN) , for some ill]
=> OPT(N-S ;) FIN-Si) < OPT(N) + 1

,
for some iSk] = OPT(N) is not optimel , a contradiction .

It Follows that FIN) =OPTCN) - M

Mobile User

Ex. 6.4d)

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Ex. 6.4d)

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Again,re writeodeunder teessumptiothat we
have the solution for N,ea

Recap

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Recall - The DP ”Recipe”:

A general plan for solving DP problems:

1 Define a suitable subproblem.

What is the structure of the solution? What are the parameters? (e.g., DP[i], DP[i][j])

2 Establish a recurrence relation.

How does the solution to a problem depend on smaller subproblems?
Define base cases!

3 Compute the solutions (Bottom-Up).

In what order must the DP table be filled?

4 Assemble the solutions.

Where in the table is the final solution?

5 Analyze correctness and runtime.

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Why Look for Patterns?

As I mentioned last week, DP is about analyzing structure.

The ”trick” to DP is finding the right subproblem.

Di!erent problem structures lead to di!erent kinds of subproblems.

We aren’t memorizing solutions, we are learning patterns of thought.

By comparing the problems, we can identify ”archetypes” that help narrow down the
search space.

Key Insight

The structure of your subproblem should match the decision structure of your problem.

What choices do you make at each step?

What information do you need to make those choices?

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Our DP Problem ”Archetypes”

Most DP problems we’ve seen fall into one of three main families:

Sequence Alignment /

”Prefix Comparison” -
Last Week

Core Idea: Compare two
sequences, A and B .

Subproblem: DP[i][j] =
Solution for prefixes
A[1..i] and B[1..j].

Examples: Longest
Common Subsequence,
Edit Distance.

Sequential Decision /

”Ending At” -
Last Week

Core Idea: Build an
optimal structure in a
single sequence where
order matters.

Subproblem: DP[i] =
Solution ending at index
i (or reaching i).

Examples: LAS, Jump
Game, Max Subarray.

Bounded Resource /

”Take It or Leave It”

Core Idea: Select an
optimal subset of items
with a constraint.

Subproblem: DP[i][k] =
Solution using items 1..i
with resource k .

Examples: 0/1
Knapsack, Subset Sum.

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Connecting to This Week’s Problems

Let’s map this week’s problems to the archetypes:

Longest Ascending Subsequence: Archetype 2 (Sequential Decision)
Single array A[1..n] with structural rule: ascending order

Decision: ”Which valid predecessor j < i (where A[j] < A[i]) extends best?”

Subset Sum: Archetype 3 (Bounded Resource)
Items A[1..n] + target sum constraint b

Binary choice: Take A[i] or leave it.

0/1 Knapsack: Archetype 3 (Bounded Resource)
Items with weights/profits + capacity constraint W

Binary choice: Take item i (and pay wi) or leave it.

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

1) Sequence Alignment

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Archetype 1: Sequence Alignment Problems (Last Week)

Archetype: Longest Common Subsequence

Key Feature: Alignment. Find the best way
to match, skip, or transform elements from
two sequences.

Subproblem: L[i][j] = LCS of A[1..i] and
B[1..j].

Key Idea: The solution for L[i][j] depends
only on decisions about the last characters,
A[i] and B[j].

Recurrence:

L[i , j] =

{
1 + L[i → 1, j → 1] if ai = bj

max(L[i → 1, j], L[i , j → 1]) if ai ↑= bj

Depends only on its 3 neighbors

L[i , j]

L[i → 1, j] L[i , j → 1]L[i → 1, j → 1]

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Archetype 1: Why 2D?

Intuition for the Subproblem:

We cannot solve the problem without knowing our position in both sequences.

This forces us to use a 2D state: DP[i][j] = ”Solution for A[1..i] and B[1..j]”.

Why 1D Fails for LCS

Try: L[i] = LCS length for A[1..i] and B[1..i]

Problem: The optimal LCS might use di!erent positions from each string:

E.g., A = ”TIGER”, B = ”ZIEGE”

Optimal LCS ”IGE” uses A[2, 3, 5] and B[2, 3, 4]

We lose crucial information about where we are in each sequence independently.

The Core Question: ”To get DP[i][j], what do we do with A[i] and B[j]?”

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Archetype 1: Related Problems

Problems following this pattern:

Edit Distance:

DP[i][j] = min operations to transform A[1..i] ↑ B[1..j]

Decision: ”Match? Replace? Insert? Delete?”

Recurrence: ED[i , j] = min






ED[i → 1, j] + 1

ED[i , j → 1] + 1

ED[i → 1, j → 1] + [A[i] ↓= B[j]]

Longest Common Substring (contiguous):

DP[i][j] = length of longest common substring ending at i , j

Decision: ”Does A[i] = B[j]? If yes, extend; if no, reset to 0.”

Pattern Recognition: Two sequences + element-by-element decisions =↔ DP[i][j] for
prefixes.

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

2) Sequential Decision

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Archetype 2: Sequential Decision Problems

Core Pattern

Process elements one at a time in a sequence. Make decisions based on previous elements
with order-dependent rules.

Key Insight: This archetype splits into two subpatterns depending on whether the solution
requires contiguous or non-contiguous elements:

1 Contiguous/Local Pattern: Solution requires adjacent/recent elements only
Can often decide using only DP[i → 1] or a small local window
Leads to O(n) or O(n log n) solutions

2 Non-Contiguous/Global Pattern: Solution can skip elements freely
Must consider all valid predecessors j < i

Naive approach: O(n2), but often optimizable!

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Archetype 2a: Contiguous/Local Pattern

Canonical Example: Maximum Subarray Sum

Subproblem: DP[i] = max sum of subarray ending at i

Key Feature: Subarrays must be contiguous

Decision: Only two choices at i :

1 Extend previous subarray: DP[i → 1] + A[i]
2 Start fresh at i : A[i]

Recurrence:

DP[i] = max(DP[i → 1] + A[i],A[i])

Runtime: O(n) — only need previous element!

DP[i]

DP[i → 1]

Only depends on
previous element

Why Local? The contiguity constraint means we can only extend the immediately previous subarray or
start over.

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Archetype 2b: Non-Contiguous/Global Pattern (Naive)

Canonical Example: Longest Ascending Subsequence (LAS)

Subproblem: L[i] = length of LAS ending at i

Key Feature: Subsequences can skip

elements

Decision: Must check all valid predecessors:

Which j < i has A[j] < A[i]?
Which gives best L[j]?

Recurrence:

L[i] = 1+max({L[j] | j < i ,A[j] < A[i]}↓{0})

Runtime: O(n2) — must check all j < i

Depends on all j < i

L[i]

L[1] L[2] . . . L[i → 1]

Why Global? We can skip elements freely, so must consider all possible predecessors that satisfy
A[j] < A[i].

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Archetype 2b: Optimizing Non-Contiguous Problems

The O(n2) solution is often just the starting point!

We have seen two problems where we can define the subproblem in a way as to narrow

down the viable candidates and make them e!ciently searchable.

1 Jump Game:

Instead of DP[i] = ”min jumps to reach i” (requires checking all j < i)
Use DP[k] = ”farthest position reachable in k jumps”
Only process each position once =↔ O(n)

2 Longest Ascending Subsequence:

The naive approach checks all j < i where A[j] < A[i]
Key insight: We only care about the best (longest) subsequence ending with each possible
value
Use binary search on (smallest possible) tail values =↔ O(n log n)
Maintains: ”smallest tail value for each subsequence length”

The archetype helps you find the O(n2) solution; optimization requires deeper problem-specific
insight!

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Archetype 2: Related Problems by Subpattern

Contiguous/Local (O(n)):

Max Subarray Sum:

DP[i] = max(DP[i → 1] + A[i],A[i])

Min-Cost Stairs (last week):

DP[i] =
min(DP[i→1]+c[i→1],DP[i→2]+c[i→2])
jump from one or two steps down at cost
ci

Non-Contiguous/Global:

LAS (naive): O(n2)
DP[i] = 1 + max{DP[j] | A[j] < A[i]}
Optimized: O(n log n) with binary search

Jump Game (naive): O(n2)
DP[i] = 1 + min{DP[j] | j + A[j] ↑ i}
Optimized: O(n) with subproblem change

Max Sum Asc. Subseq.: O(n2)
Similar structure to LAS

Pattern Recognition: Contiguous ↓ local dependency; Non-contiguous ↓ global dependency
(but often optimizable).

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Deep Dive: Longest Ascending Subsequence (LAS)

Definition 2.11 (LAS)

Given an array A[1..n]. We seek the length of a longest subsequence of A whose elements are
ascending.

Example: A = (2, 13, 17, 9, 11, 4, 78, 28, 15, 25, 99)

Ascending subsequence: (2, 13, 17, 78, 99) =↔ Length 5

Longest ascending subsequence (LAS): (2, 9, 11, 15, 25, 99) =↔ Length 6

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

LAS: Attempt 1 (Fails)

Subproblem: LAT (i) = Length of the LAS in array A[1..i].

Problem: The solution for A[1..i → 1] doesn’t necessarily help us find the solution for A[1..i].

Example: A = (1, 2, 5, 3, 4)

LAT (3) for (1, 2, 5) is 3. (Sequence: (1, 2, 5))

LAT (4) for (1, 2, 5, 3) is 3. (Sequence: (1, 2, 5) or (1, 2, 3))

LAT (5) for (1, 2, 5, 3, 4) is 4. (Sequence: (1, 2, 3, 4))

We cannot simply compute LAT (5) from LAT (4)!

Realization: We need to remember more than just the length. The ending values of the
subsequences are important.

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

LAS: Better DP (O(n
2
))

Idea: For each possible length l , we store the smallest possible

ending element of an AS of that length.

Subproblem: DP[i][l] := the smallest possible ending element of
an AS of length l in the range A[1..i].

Recurrence: To compute DP[i][l], we consider A[i]:

1 We don’t use A[i], instead use DP[i → 1][l].

2 We use A[i]: We can append A[i] to an AS of length l → 1
ending in DP[i → 1][l → 1].

DP[i][l] = min{DP[i → 1][l]), A[i] (if A[i] > DP[i → 1][l → 1])}

Runtime: We fill an n ↑ n table. Each cell takes O(1).
=↓ O(n2).

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

3

7

g

4

5

LAS: The O(n log n) Solution

Observation 1: The rows of the DP[i][...]) table are sorted:
DP[i][l] < DP[i][l + 1] (since DP[i][l] is the smallest end
value).

Algorithm: We don’t need the whole O(n2) table, just an
array DP[1..n], where DP[l] stores the smallest end value of
an AS of length l found so far.

T [1..n] → ↑, T [0] → ↓↑
for i → 1 to n do

Find l (with binary search) such that
T [l ↓ 1] < A[i] ↔ T [l]

T [l] → A[i]
end for

return largest l such that T [l] < ↑

Runtime: n iterations. Each iteration: one binary search
(O(log n)). =↗ O(n log n).

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

findtheluestzuketheif larger then d

presp
2

,
13 , 17 ,

5 , 11 , ...

for all

1)-improves
the As of centra

later elements
Clower

teilwalme)

3) Bounded Resources

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Archetype 3: Bounded Resource Problems

Archetype: 0/1 Knapsack

Key Feature: Resource Management. We
have a limit and must make binary choices.
Order doesn’t matter.

Subproblem: P[i][w] = Max profit using
items 1..i with capacity w .

Key Idea: For item i , make a single binary
choice:

1 Don’t Take: P[i → 1][w]
2 Take: pi + P[i → 1][w → wi]

Recurrence:

P[i ,w] = max(P[i→1,w], pi+P[i→1,w→wi])

Depends only on the row above (items 1..i → 1)

P[i ,w]

P[i → 1,w] P[i → 1,w → wi]

Don’t Take Take

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Archetype 3: Why 2D?

Intuition for the Subproblem:

We need to track two things:
1 Which items have we considered? (the i in DP[i][k])
2 How much resource have we used? (the k in DP[i][k])

Why 1D Fails for Knapsack

Try: P[i] = max profit using items 1..i

Problem: We don’t know how much capacity was used!

If we took high-profit items early, we might have no capacity left. But maybe skipping those
items leaves room for a better combination later.

We need to track remaining capacity at each step.

The Core Question: ”For item i , do we ’Take It’ or ’Leave It’?”

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Problem: Subset Sum Problem

Definition 2.4 (Subset Sum)

Given: n natural numbers A[1], ...,A[n] and a target number b.

Wanted: A subset I ↗ {1, ..., n} such that
∑

i→I
A[i] = b.

Example:

A = (5, 3, 10, 7, 3, 1), b = 9.

I = {1, 5, 6} =↔ A[1] + A[5] + A[6] = 5 + 3 + 1 = 9. Answer: Yes.

A = (5, 3, 10, 7, 3, 1), b = 2.

No subset sums to 2. Answer: No.

Naive Approach: Try all 2n subsets =↔ Exponential!

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Subset Sum: The DP Solution

Subproblem: T (i , s) := (boolean) ”Is it possible to achieve
the sum s with a subset of A[1..i]?”

Recurrence: To compute T (i , s), we have two choices for
the element A[i]:

1 We do not use A[i]: We must have already achieved
sum s with A[1..i → 1]. =↑ T (i → 1, s)

2 We use A[i]: We must have achieved the remaining
sum s → A[i] with A[1..i → 1]. =↑ T (i → 1, s → A[i])

T (i , s) = T (i → 1, s) ↓ T (i → 1, s → A[i])

Base Cases:

T (0, 0) = 1 (Sum 0 is possible with 0 elements).
T (0, s) = 0 for s > 0.

Solution: T (n, b).

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Subset Sum: Analysis

Runtime

Computation: Fill an (n + 1)↘ (b + 1) table, row by row.

Each cell T (i , s) only depends on the previous row (i → 1).

Each cell takes O(1) time.

=↔ O(n · b)
But notice that the length of the input for value b is log b!

Pseudo-polynomial Runtime

The runtime is polynomial in n and the value b.

It is not polynomial in the input length (which is n + log b bits).

If b = 2n, the runtime is ”(n · 2n) =↔ exponential!

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Problem: Knapsack Problem (0/1 Knapsack)

Definition 2.6 (Knapsack)

Given: n items, each with weight wi and profit pi . A knapsack with capacity W .

Wanted: A subset I ↗ {1, ..., n} such that
∑

i→I
wi ≃ W and

∑
i→I

pi is maximal.

Again: Greedy strategies (e.g., ”highest profit first”, ”best pi/wi ratio”) do not work for the
0/1 Knapsack problem.

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Knapsack: DP Solution 1 (O(nW))

Idea: Very similar to Subset Sum, but instead of ’Yes/No’,
we ask for the optimal sol.

Subproblem: DP[i][w] := the maximum profit one can
achieve with a subset of A[1..i] given a weight limit w .

Recurrence: For DP[i][w], two choices for A[i]:

1 We do not take A[i]:

Maximum profit is DP[i → 1][w].
2 We take A[i]

and get profit: pi + DP[i → 1][w → wi].

DP[i][w] = max{DP[i → 1][w], pi + DP[i → 1][w → wi]}

Base Case: DP[0][w] = 0 for all w .

Runtime: O(n ·W) (pseudo-polynomial).

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Knapsack: DP Solution 2 (O(nP))

Idea: Swap the roles of weight and profit.

Subproblem: G(i , p) := the minimum weight needed to
achieve exactly the profit p with a subset of A[1..i].
(DP[i][p] = ↑ if p is not reachable).

Recurrence: For DP[i][p], two choices for A[i]:

1 We do not take A[i]:

Min. weight is DP[i → 1][p].
2 We take A[i] (if pi ↓ p):

Weight is wi plus the min. weight to get the remaining
profit p → pi with A[1..i → 1]: wi + DP[i → 1][p → pi].

DP[i][p] = min{DP[i → 1][p], wi + DP[i → 1][p → pi]}

Base Cases: DP[0][0] = 0, DP[0][p] = ↑ for p > 0.

Solution: Find max{p0 | DP[n][p0] ↓ W }.

Runtime: O(n · P) (where P =
∑

pi).

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

The Problem with Knapsack

Subset Sum and Knapsack are NP-complete.

This means we don’t expect a truly polynomial algorithm (unless P=NP (don’t try to prove
it...)).

Our O(nW) and O(nP) solutions are pseudo-polynomial.

If W and P are huge? (e.g., W ,P > 2n), both DP algorithms would be exponential!

New Idea: What if an almost optimal solution is good enough?

Goal: A (1→ ω)-approximation algorithm that runs in time poly(n, 1/ω).

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

FPTAS: The Idea

The O(nP) algorithm is slow because P (the maximum profit) can be large.

The Trick: Round the profits!

If we divide all profits by K and round, the new maximum profit P ↑ ⇐ P/K .

=↔ The O(nP ↑) algorithm is then O(nP/K) fast.

Trade-o”:

Large K : Fast runtime, but inaccurate solution (lots of rounding error).
Small K : Slow runtime, but accurate solution.

Goal: Choose K ”just right” so that the error is ≃ ω · POPT and the runtime remains
poly(n, 1/ω).

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

FPTAS: Runtime

Let ω > 0 be our desired approximation error (e.g., ω = 0.1).
1 Find pmax = maxi{pi}.
2 Set the scaling factor K := ω·pmax

n
.

3 Create new, scaled profits: pi := K · ↔ pi

K
↗.

4 Solve the Knapsack problem with weights wi and profits pi .
5 Return the found subset OPT as the solution to the original problem.

Runtime

The runtime is O(n·P
K

), since we only need to fill-in every k-th column in the DP-table.

Then since P =
∑n

i=1 pi ↘ n · pmax , the runtime is:

O(nP
K
) ↘ O(n(n·pmax)

K
) = O(n

2
pmax

ωpmax/n
) = O(n3/ω)

This is a Fully Polynomial Time Approximation Scheme (FPTAS).

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

FPTAS: The Algorithm

Let ω > 0 be our desired approximation error (e.g., ω = 0.1).

Quality

The solution OPT has a profit p(OPT) → (1↑ ω) · p(OPT).

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Let F

=Kappxsotion:
OPT = optiles h

(4)

Notice :

(1) Fi= .
K

,
i
. e ., rounded down t the next multipleof K . Hence pi-=k (rounding can cause a diff of

of most K .

It follows :

(10PT = 1) (dauf. Popt) Ifector out Popt
ICotton)Pi - 1 =- *Poll-E

=
different sets ?

Again , letting K=pox
,
we obtain :Eati = Pot = Pout)1 - E) ·

Archetype 3: Related Problems

Problems following this pattern:

Subset Sum:

DP[i][s] = ”can we make sum s using items 1..i?” (boolean)
Decision: ”Include A[i] or not?”
Recurrence: T [i , s] = T [i → 1, s] ⇒ T [i → 1, s → A[i]]

Coin Change:

DP[i][v] = min coins to make value v using first i coin types
Decision: ”How many of coin i do I use?”

Partition Problem:

DP[i][s] = ”can we partition items 1..i to sum s?”

Pattern Recognition: Items + resource constraint =↔ DP[i , resource].

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Summary

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Summary: DP Patterns

Archetype Key Feature Subproblem DP[. . .] Dependency

Sequential Decision Valid Extension DP[i] = Sol. ending at i Local: DP[i → 1]
(Order matters) (Kadane, LAS) Global: All j < i

Sequence Alignment Alignment DP[i][j] = Sol. for DP[i → 1][j], DP[i][j → 1],
(2 sequences) (LCS, Edit Dist.) prefixes A[1..i], B[1..j] DP[i → 1][j → 1]

Bounded Resource Resource Mgmt. DP[i][k] = Sol. using DP[i → 1][k],
(Subset selection) (Knapsack, Subset Sum) items 1..i , resource k DP[i → 1][k → costi]

The Universal Question:

”What information do I need about smaller subproblems to make an optimal decision for the
current problem?”

Your subproblem parameters should capture exactly that information.

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Additional Practice

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

DP - Partition Problem (1/3)

Description:

Given a non-empty array of positive integers A, determine if the array can be partitioned into
two subsets such that the sum of elements in both subsets is equal.

Example:

Input: A = [1, 5, 11, 5]

Output: true

Explanation: The array can be partitioned as 1, 5, 5 (sum=11) and 11 (sum=11).

Input: A = [1, 2, 3, 5]

Output: false

Explanation: The total sum is 11 (odd), so it’s impossible to partition into two equal
halves.

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

DP - Partition Problem (2/3)

Compute the solution using bottom-up dynamic programming and state the run time of your algorithm.

Address the following aspects in your solution:

1 Definition of the DP table: What are the dimensions of the table DP [. . .]? What is the
meaning of each entry?

2 Computation of an entry: How can an entry be computed from the values of other entries?
Specify the base cases, i.e., the entries that do not depend on others.

see next page for cont.

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

DP - Partition Problem (3/3)

3 Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

4 Extracting the solution: How can the final solution be extracted once the table has been filled?

5 Runtime: What is the run time of your solution?

When you’re done, try implementing your solution on CodeExpert!

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Peer Grading

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

Peer-Grading Exercise

This week’s peer-grading exercise is Exercise 6.3

Please follow the usual process:

Grade the assigned group’s submission.

Give constructive feedback and upload your feedback to Moodle by 23.59 tonight, at the
latest.

Contact me if you don’t receive a submission to grade.

Mini-Quiz Assignment Recap 1) Sequence Alignment 2) Sequential Decision 3) Bounded Resources Summary Additional Practice Peer Grading

	Mini-Quiz
	Assignment
	Recap
	1) Sequence Alignment
	2) Sequential Decision
	3) Bounded Resources
	Summary
	Additional Practice
	Peer Grading

