Week 8: Introduction to Graph Theory

Algorithms & Data Structures

Thorben Klabunde

www.th-kl.ch

November 10, 2025

th-kl.ch

e Mini-Quiz

© Assignment

© What is a Graph?
@ Properties of Graphs
© Eulerian Walks

© Additional Practice

@ Peer Grading

Mini-Quiz

For the longest ascending subsequence (LAT), which partial problem corresponds to the following
recursion?

DP(i, 0) = {1, if there is j < ¢ with DP(j,£ — 1) = 1 and A[j] < A[i]_

0, otherwise
a. DP(i,£) = "A[i] is the smallest ending of an ascending subsequence of length £in A[1...z]".

b. DP(i,£) = "there is an ascending subsequence of length £ ending in 7".

Your answer is correct.

In the definition, we only ask that there exists a j smaller than 7 where the DP array is 1 and the
element there is smaller than the element at position <. This precisely means that we can extend an
increasing subsequence of length £ — 1 to one of length £.

The correct answer is: DP(i,£) = "there is an ascending subsequence of length £ ending in 7".

Q2

Recall the setting of the Subset Sum problem. We are given a list of n integers and a number b and are
asked to answer whether there exists a subset in the list that sums to b.

If bis at most 10n, there exists a O(n?) time algorithm that solves the problem.

True ©

False

We have seen from the lecture an algorithm that runs in time O(bn). Setting b = 10n, we see that the
statement is true.

The correct answer is ‘True'.

Q3

Consider the Subset Sum problem. Let be the number of different values s > 0 which can be
expressed as a subset sum of A[1. .]. Similarly, let y be the number of different values s > 0 which can
be expressed as a subset sum of A[1..i + 1]. Then, y < 2z.

True ©

False

As we saw in the lecture, there are two ways to achieve a number when including the (i -+ 1)-th element
as a possible summand. If we do not put it in the subset, we have numbers possible. If we do, there
are again possible numbers (each of the form a + A[i + 1], where a is a number equal to a subset
sum from A[L. . z]). The claim follows.

The correct answer is "True'.

Consider the approximation algorithm we saw in the lecture for Knapsack. Let OPT be an optimal
solution (i.e. set of elements chosen) for the original problem and let OPT be an optimal solution for
the problem with rounded profits. What does the algorithm compute?

a. OPT
b. OPT ©

c. None of the above.

Your answer is correct.

We saw this verbatim in lecture.

The correct answer is: OPT

Let G = (V, E) be a graph with 5 vertices vy, va, V3, V4, V5. Suppose that
deg(vi) = 2, deg(vs) = 2, deg(vs) = 3, deg(vq) = 3, deg(vs) = 4.

How many edges does G have? (Your answer should consist of a single integer,)

Answer: | 7 ©

We know from the lecture that, for any graph, Y,y deg(v) = 2|E|. So in this case,

P

2|E 2+4+2+3+3+4 meaning |E|=T.

The correct answer is: 7

Let G be a graph with & connected components.

True False

Removing any edge yields a graph with at most = + 1 connected ©)
components.

Removing any vertex (along with the incident edges) yields a graph ©
with at most z + 1 connected components.

Removing any vertex (along with the incident edges) with degreeat @
most 4 yields a graph with at most + 3 connected components.

Scoring method: Subpoints @

Q7

—/

The above graph contains a closed Eulerian walk.

True ©

False

Quiz

True False
The above graph has a Hamilton path.

Itis possible to add one edge so that the graph contains a

©
Hamilton iam

There cannot be a Hamilton path here, since if we remove the central vertex, the graph collapses into
three connected components. This means that we have to use it to move from one to another. In an
alleged Hamilton path, we would visit vertices vy, vs, v3 in some order, where each of these vertices
belongs to a different connected component. Now, the central vertex exists only once in the alleged
Hamilton path, which means that one of the subpaths from v; to v5 or v, to v3 does not include the
central vertex, which cannot happen.

We have pinpointed the problem, and one way to fix it is to add an edge across two of the connected
components. We still need to be careful about this choice, but one exists. For example, the edge
between the two vertices geometrically closest to the central vertex

The above graph has a Hamilton path.: False
It is possible to add one edge so that the graph contains a Hamilton path.: True

Answer the following True/False questions.

True False

A polynomial time algorithm is known for deciding whether a ©
closed Eulerian walk exists in a graph.

A polynomial time algorithm is known for deciding whether a ©
Hamilton path exists in a graph.

Scoring method: Subpoints @

Assignment

Exercise 7.1 1-3 subset sums (1 point).

Let A[1,...,n] be an array containing n positive integers, and let b € N. We want to know if there
exists a subset I C {1,2,...,n}, together with multipliers ¢; € {1,3}, ¢ € I such that:

b=>"c;-Ali.
el
If this is possible, we say b is a 1-3 subset sum of A. For example, if A = [16,4,2,7,11,1] and b = 61,
we could writeb =3-16+44+3-2+3 1.

Describe a DP algorithm that, given an array A[l,...,n] of positive integers, and a positive integer
b € N returns True if and only if b is a 1-3 subset sum of A. Your algorithm should have asymptotic
runtime complexity at most O(b - n).

3. Recursion: D P can be computed recursively as follows:

DP[0][s] = False 1<s<b (1)

DP[a][0] = True 0<a<bd (2

DPla)[s] = DPJa — 1][s] oxr DP[a — 1][s — Ala]] or DP[a —1][s —3- A[a]] 1<a<n, (3)
1<s<b.

Note that in equation (3), the entries ‘DP[a — 1][s — A[a]]’ and ‘DP[a — 1][s — 3 - A[a]]’ might fall
outside the range of the table, in which case we treat them as False.

Exercise 7.3 Road trip.

You are planning a road trip for your summer holidays. You want to start from city Cp, and follow the
only road that goes to city C), from there. On this road from Cj to C,, there are n — 1 other cities
Ci,...,Cp—_1 that you would be interested in visiting (all cities C1, ..., Cy,_1 are on the road from Cy
to Cy,). For each 0 < ¢ < m, the city C; is at kilometer k; of the road for some given 0 = ko < k1 <
oo < kpo1 < kp.

You want to decide in which cities among C1, . .., Cy,—1 you will make an additional stop (you will stop
in Cp and C,, anyway). However, you do not want to drive more than d kilometers without making a
stop in some city, for some given value d > 0 (we assume that k; < k;_; + d for all ¢ € [n] so that
this is satisfiable), and you also don’t want to travel backwards (so from some city C; you can only go
forward to cities C; with j > 1).

PPLI= 1) 2 27

1. Dimensions of the DP table: The DP table is linear, and its size is n + 1.
2. Subproblems: D P[i] is the number of possible routes from Cy to C; (which stop at C;).
3. Recursion: Initialize DP[0] = 1.
For every i > 0, we can compute D P[i] using the formula
DPfi]= Y DPj. @
0<j<i
ki <k;+d

This recursion is correct since city C; can be reached from Cj (for 0 < j < 4) if and only if
k; < k;j + d. Summing up the number of routes from Cj to these C;, we get the number of
routes from Cy to Cj.

4. Calculation order: We can calculate the entries of DP as follows:
fori=0...ndo

Compute DPJ[i).
5. Extracting the solution: All we have to do is read the value at DP[n].

6. Running time: For i = 0, DPJ[0] is computed in O(1) time. For ¢ > 1, the entry DPJi] is
computed in O(%) time (as we potentially need to take the sum of ¢ entries). Therefore, the total
runtime is O(1) + Y"1, O(i) = O(n?).

N-P—0

Exercise 7.4 String counting (1 point).

Given a binary string S € {0,1}" of length n, let f(S) be the number of times “11” occurs in the
string, i.e. the number of times a 1 is followed by another 1. In particular, the occurrences do not need
to be disjoint. For example f(“111011”) = 3 because the string contains three 1 (underlined) that are
followed by another 1. Given n and k, the goal is to count the number of binary strings S of length n
with f(S) = k.

Describe a DP algorithm that, given positive integers n and k with k < n, reports the required number.
Your solution should have complexity at most O (nk).

O I 2. {..n

"""" 'élw\[’ Hoes Not QWA/

) Musbee oF bin. :&wuds c>&(q1§rL t =

l o€l €& occaccercey o (|

How cam U o8tain o 5(:\‘(& O € ocafceced qf?‘% qeloiy
(
G either %O, e lofTr . x conk. @ Lines N7 (XOL(= L occ. in >(>
or)l <o’ 54 x cont. d-(N & add | (><H = -+ !)

QD does not ellou s €o kee(o Q‘QCQ Dd: R e Pif'ﬂ Ro? lnoctation oq the @d,nj
=) (se D?D lﬁ}[f r\j[O ﬂ ({UO dd'tional dimveglons Sor fLe e/\o(ff\\ﬂ

Assignment

1. Dimensions of the DP table: DP[1...n][0...k][0...1].

2. Subproblems: The entry DP/[i][4][]] describes the number of strings of length ¢ with j occurrences
of “11” that end in I.

. Recursion: The base cases for i = 1 are given by DP[1][0][0] = 1 (the string “0”), DP[1][0][1] = 1
(the string “17), DP[1][4][0] = 0 and DP[1][j][1] = 0 for 1 < j < k. The update rule is as follows:
For1l <4 <nand0 < j <k, to get a string of length ¢ with j occurrences of “11” ending in 0, we
can append “0” to a string of length ¢ — 1 with j occurrences of “11” ending in 0 or 1, which gives

w

DPi[4][0] = DP[i — 1][5][0] + DP[i = 1][j][1]. 0o Aeo eccuscascey oF (I addladk S
- - =

. o . L . . exdedin 4 oith O
To get a string of length 7 with j occurrences of “11” ending in 1, we can append “1” to a string of
length i —1 with j occurrences of “11” ending in 0 or to a string of length ¢ — 1 with j — 1 occurrences

of “11” ending in 1 (if j > 0). Thus,

pPj - { 22~ UG, 50
DPli ~1][j)[0] + DPfi — 1)[j ~ 1][1], ifj>0.
— —
XEL x I
ne neY ((

— oG
one ne (I

What is a Graph?

What is a Graph?

Motivation: Graphs Are Everywhere

Three examples of real-world problems:
1. Reachability 2. Shortest Paths

o

O

Social Networks
" Can Alice reach Bob through

3. Spanning Trees

Network Design
" Connect all cities with minimum
railway length”

Navigation
" Fastest route from home to

H " H ity?"
friends? university

Graphs provide a unifying language to model relationships and solve a large number of
problems!

What is a Graph?

Definition: What is a Graph?

Definition 1.1 (Graph)
A graph G is a pair G = (V/, E), where:
e V is a finite, non-empty set of vertices (or nodes)
o EC (%) ={{x,y} | x.y € V,x #y} is a set of edges

o An edge {u,v} € E connects vertices u and v

e We write {u, v} for an edge

Note: By this definition, we exclude loops (edges from a vertex to itself) and multiple edges
between the same pair of vertices.

What is a Graph?

Example: A Simple Graph

Graph G = (V,E)
V =1{1,23,4}
E ={{1,2},{1,3},{2,3},{2,4},{3,4}}

Properties:
@ 4 vertices: |V|=4
o 5 edges: |[E|=5

What is a Graph?

Directed vs. Undirected Graphs

Undirected Graph

Directed Graph (Digraph)
@ Edges have no direction

e Edges have direction (arrows)

o {u,v}={v,u} o (u,v)#(v,u)
@ Examples: friendships, physical
connections

D—

Today’s focus: We'll primarily work with undirected graphs, but the concepts extend
naturally to directed graphs.

@ Examples: one-way streets

What is a Graph?

Key Definitions

Adjacency and Incidence

Let G = (V,E) be a graph, u,v € V, and e € E.

@ Vertices u and v are adjacent if {u,v} € E

@ u and v are called the endpoints of edge e = {u, v}

@ A vertex u and an edge e are incident if v is an endpoint of e

@ u and v are adjacent
@ e is incident to both v and v

@ u and w are also adjacent

What is a Graph?

Neighborhood and Degree

Definition 1.2 (Neighborhood and Degree)

For a vertex v € V in graph G = (V, E):
@ The neighborhood of v is: Ng(v) :={ue V| {v,u} € E}
@ The degree of v is: deg.(v) := |Ng(v)]

For vertex v:
e N(v)={a,b,c}

o deg(v)=3
Other degrees:
o deg(a) =
o deg(b) =2
e deg(c)=1
o deg(d) =1

What is a Graph?

Connectedness and Connected Components
Connected Graph

Definition: Reachability

A vertex u reaches v (written u ~~ v) if there exists a path from
utov.

Definition: Connected

A graph G is connected if every vertex reaches every other vertex.

1 connected component

Definition: Connected Component Disconnected Graph

A connected component is a maximal connected subgraph and
the equivalence class of the "reaches” relation.

Note: Connected components partition the vertices. Each vertex
belongs to exactly one component. T

no path

3 connected components

What is a Graph?

Special Types of Graphs

Complete Graph K, Cycle C,
Path P,
Linear connection
All vertices pairwise connected Circular connection Ps (5 vertices, 4 edges)
Ks (5 vertices, 10 edges) Cs (6 vertices, 6 edges)

These are canonical examples that appear frequently in graph theory and algorithms.

What is a Graph?

Your Turn: Maximum Number of Edges

Determine the maximum number of edges a Graph G = (V, E) can have, i.e., the number of
edges in the complete graph K, in terms of n.

Discuss with your neighbor (2-3 minutes)

What is a Graph?

Maximum Number of Edges

Determine the maximum number of edges a Graph G = (V, E) can have.

Pecell Hat E = <l> Ohere (2 {_(4 u] u‘ueVK

The ww‘?wz_ &N(DL« C=UE) on (U= NeN vgces thet Saflfies E = (Z)

18 e com?:le_é; GNPL,

TheseSore e hadhata Nacbes o8 Md“ fasé b (2 = Lz) = Srg\

futcnstive e
Led G=(VE) e Ky, st lV=a.
37 Handgh.L. - %—/ aﬂaé(u) = l‘lE(. Nefieg 0@1\8(\/) =a-] Sor vel/ since G=k,

-0
=D Zﬂﬂo(@—_(\.(“_() = Q(El = |E] = n(;\lt .

Special Types of Graphs - Trees

Definition 1.4 (Tree)

An undirected graph G = (V,E) is a tree if it is:
@ Connected, and

@ Acyclic (contains no cycles).

A forest is an acyclic graph (i.e., a collection of disjoint trees).

Example: A Tree Not a Tree (Has a cycle) Not a Tree (A forest)

Connected and Acyclic Connected, but not acyclic Acyclic, but not connected

What is a Graph?

How to Represent a Graph?

Two main data structures for storing graphs:

Adjacency Matrix Adjacency List

A=

o= O
= O O
—_ o0 O
o == O

Alillj] = 1 if edge {i,;} exists Each vertex stores its neighbors

What is a Graph?

Adjacency Matrix vs. Adjacency List: The Tradeoff

Operation | Adjacency Matrix | Adjacency List
Space T ove | o(vi+E)
Check if edge {u, v} exists | 0(1) | O(min{deg(u), deg(v)})
Find all neighbors of v | o(|V)) | O(deg(v))

Add edge | 0(1) | 0(1)

Remove edge {u, v} ‘ 0o(1) | O(deg(u) + deg(v))

Use Adjacency Matrix when:
@ Dense graphs (|E| ~ |V/|?)
@ Need fast edge lookups
@ Graph is small

Use Adjacency List when:
e Sparse graphs (|E| < |V[?)
o Need to iterate over neighbors

o Graph is large

[Most real-world graphs are sparse, so adjacency lists are typically preferred!]

What is a Graph?

Properties of Graphs

Properties of Graphs

The Handshake Lemma

Theorem 1.2 (Handshake Lemma)

For every graph G = (V, E):

> deg(v) = 2|E|
veV
Degrees:
e a o deg(l) =2
@ deg(2) =2
@ deg(3) =2
@ deg(4) =2

e ° d>odeg(v)=24+24+24+2=38

|[E| =4,502|E| =8V

Properties of Graphs

Proof of the Handshake Lemma

Intuition: Each edge contributes 2 to the sum of degrees (once for each endpoint).
o Consider the sum ., deg(v)
@ This counts how many times vertices are incident to edges
o Each edge e = {u, v} has exactly 2 endpoints: v and v

@ So edge e is counted exactly twice in the sum:

o Once when counting deg(u)
e Once when counting deg(v)

@ Since there are |E| edges, and each is counted twice:

> deg(v) = 2|E|

veV

O

Properties of Graphs

A Surprising Consequence

In every graph G = (V, E), the number of vertices with odd degree is even.

Let’s prove this together!

@ Let Veyen = vertices with even degree
o Let V,qq = vertices with odd degree

@ We know: V = Viyen U Voda (disjoint union)

Your task: Use the Handshake Lemma to prove |Voq4| is even.

Properties of Graphs

Proof: Number of Odd-Degree Vertices is Even

Proof:
Work through the proof with your neighbor (2-3 minutes)
deg(v)?

Hint: What can you say about the parity of) .,

Properties of Graphs

Solution: Odd-Degree Vertices

Partition V into Veyen (even degree) and Voyq (odd degree).
By the Handshake Lemma:

Zdeg(v): Z deg(v) + Z deg(v) = 2|E]|

vev VE Veven VE Vodd

Key observations:
® > v, deg(v) is even (sum of even numbers)
@ 2|E| is even

o Therefore:) ., deg(v) must be even

But a sum of odd numbers is even only if there are an even number of them!

= |Vodd| Is even.] O
V.

Properties of Graphs

Eulerian Walks

Eulerian Walks

Important Concepts: Walks, Paths, and Cycles

Definitions

Let G = (V, E) be a graph. A sequence of vertices (v, v1, ..., V) is:

o Awalk if {v;,vi;1} € Eforall 0<i<k-1
o The length is k (number of edges)
o Vertices can be repeated

@ A closed walk if it is a walk, kK > 2, and vy = v,
o Starts and ends at the same vertex

o A path if it is a walk and all vertices are distinct (v; # v; for i # j)

o No vertex is visited twice

@ A cycle if it is a closed walk, k > 3, and all vertices except vy = vi are distinct
o A closed path (returns to start)

Eulerian Walks

Eulerian Walks and Hamiltonian Paths

Eulerian Concepts (about edges): Hamiltonian Concepts (about vertices):
@ An Eulerian walk is a walk that contains e A Hamiltonian path is a path that
every edge exactly once contains every vertex
@ A closed Eulerian walk is a closed walk e A Hamiltonian cycle is a cycle that
that contains every edge exactly once contains every vertex

Traverses all edges Visits all vertices

Key Distinction: Eulerian = edges, Hamiltonian = vertices

Eulerian Walks

Euler's Answer: When Does a Closed Eulerian Walk Exist?

Theorem 1.31 (Euler's Theorem)
A connected graph G has a closed Eulerian walk if and only if every vertex has even degree.

Why does this make sense?
@ Every time we enter a vertex, we must also leave it

@ This uses up 2 edges at that vertex

o If we traverse all edges exactly once, we must enter/leave each vertex the same number of
times
— Each vertex must have even degree!

Eulerian Walks

Proof Strategy

We prove both directions:

=

/;\
\V

=

All vertices have

Closed Eulerian
even degree

walk exists

Eulerian Walks

Proof: Direction = (Easy)

Assume: There exists a closed Eulerian walk W
Show: All vertices have even degree

enter \ /) leave
enter / \\ leave

Each visit uses 2 edges

Pick any vertex v. In walk W, every time we pass through v, we use 2 edges (one in, one out).
This holds even for the start/end vertex.

Therefore: deg(v) = 2 X (# of visits to v) is even. O

Eulerian Walks

Proof: Direction < (Hard) - Part 1

Assume: All vertices have even degree and G is connected
Show: A closed Eulerian walk exists

Construction: Start at any vertex vy. Walk randomly, never repeating an edge.

Key Observation

Claim: This walk must eventually return to vg.

Proof: Suppose the walk gets stuck at vertex u # vy. During the walk, we visited u
some number of times (say k times) before getting stuck. Each visit used 2 edges. Plus
the final arrival used 1 edge.

Total edges used at u: 2k + 1 (odd number). But deg(u) is even! So there must be
unused edges at u.

Contradiction! We're not stuck. Therefore u = vy.

\. J

So we have built a closed walk W starting and ending at vp.

Eulerian Walks

Proof: Direction < (Hard) - Part 2

We have a closed walk W. Does it use all edges?
Case 1: Yes, W uses all edges. Then we're done! W is our closed Eulerian walk. v

Case 2: No, some edges remain unused.

After deleting edges of W, the remaining graph may be disconnected. But each connected
component still has all vertices with even degree (we removed 2 edges from each vertex
on W). So we can apply the same procedure to each component independently!

Extension Step: Since G is connected, there exists a vertex u on walk W that has unused
edges. Starting from u, build a new closed walk W’ (using the same method as before).

Merge the walks: Insert W’ into W at vertex u:

. det)
Follow W until v =% Follow W/ =% Continue W

Repeat this process. Since G has finitely many edges, we eventually use them all. O

[EELRUEINS

Visual Example: Building a Closed Eulerian Walk

What About Eulerian Walks (Not Closed Walks)?

Relaxation: What if we don't need to return to the start?

Theorem (Eulerian Walk)

A connected graph has an Eulerian walk (but not a closed walk) if and only if it has exactly 2
vertices of odd degree.

Intuition:
@ The walk must start at one odd-degree vertex

@ It must end at the other odd-degree vertex

o All other vertices must have even degree (enter = leave)

Degrees: S=3, A=2, B=2, T=3
Walk: S = A>T —->B—>S—>T
(Starts at S, ends at T)

Eulerian Walks

Questions?

Eulerian Walks

Additional Practice

Additional Practice

Sufficient Condition for Cycles

Lemma: If a graph G has deg(v) > 2 for every vertex v, then G must contain a cycle.

Additional Practice

Sufficient Condition for Cycles

Lemma: If a graph G has deg(v) > 2 for every vertex v, then G must contain a cycle.

Lot F = Cl/o((N /VL‘_) (e e (p,‘d\csé PQ‘{'L in K.
Ceasider v, and ntice Get Since P is @ pall | Uy cunaot have Leen

visited 8eve (ie., Wielo .. k1§ (U *Y) . A ccocdkingy one @ dge o
U Mheins upasel since &7 QSS‘Lhr)'f\IO/‘) o(a.g(vk)zi.
Let e L e={y W} .

Notice ot /F Mﬁ’il/a,._., Vi3 De can &uilel @ Sén'etly /9(1&«: fc.-\‘ﬂ, a contradichien .

Thew wA Yy Sace LUy U] iSin fkgfm‘t P

Thus, u=; Joc (€l0,.,4-23 and Hare exists < cqele (V{rVH/('--;VLaV() Since.
(W V) 78 @ Im-M.

(]

Additional Practice

CodeExpert - Determine if a Graph is Eulerian

Like the last two weeks, you can find a CodeExpert template on my website. Copy the
contents of the main file into the main file of the ” Welcome” exercise. Also copy the
custom.in and custom.out test-cases into the corresponding files in " Welcome”.

You are given a graph in the form of an adjacency list, where each vertex is represented by a
natural number 0 < v < n—1, n=|V|, and the neighbors of v can be accessed through
E.get(v) (returns a list of the neighboring vertices).

Implement the eulerian() method such that it determines if the given graph is Eulerian or not.

Note, one condition requires you to check the connectedness, which you have not looked at
in the lecture yet. However, the algorithm to do so is quite intuitive. Give it a shot!

Additional Practice

Peer Grading

Peer Grading

Peer-Grading Exercise

This week's peer-grading exercise is Exercise 7.1
Please follow the usual process:

o Grade the assigned group's submission.

@ Give constructive feedback and upload your feedback to Moodle by 23.59 tonight, at the
latest.

@ Contact me if you don't receive a submission to grade.

Peer Grading

	Mini-Quiz
	Assignment
	What is a Graph?
	Properties of Graphs
	Eulerian Walks
	Additional Practice
	Peer Grading

