Week 8: Introduction to Graph Theory

Algorithms & Data Structures

Thorben Klabunde

www.th-kl.ch

November 10, 2025


th-kl.ch

e Mini-Quiz

© Assignment

© What is a Graph?
@ Properties of Graphs
© Eulerian Walks

© Additional Practice

@ Peer Grading



Mini-Quiz




Assignment




Exercise 7.1 1-3 subset sums (1 point).

Let A[1,...,n] be an array containing n positive integers, and let b € N. We want to know if there
exists a subset I C {1,2,...,n}, together with multipliers ¢; € {1,3}, ¢ € I such that:

b=>"c;-Ali.
el

If this is possible, we say b is a 1-3 subset sum of A. For example, if A = [16,4,2,7,11,1] and b = 61,
we could writeb =3-16+44+3-2+3 1.

Describe a DP algorithm that, given an array A[l,...,n] of positive integers, and a positive integer
b € N returns True if and only if b is a 1-3 subset sum of A. Your algorithm should have asymptotic
runtime complexity at most O(b - n).



Exercise 7.1 1-3 subset sums (1 point).

Let A[1,...,n] be an array containing n positive integers, and let b € N. We want to know if there
exists a subset I C {1,2,...,n}, together with multipliers ¢; € {1,3}, ¢ € I such that:

b=>"c;-Ali.
el
If this is possible, we say b is a 1-3 subset sum of A. For example, if A = [16,4,2,7,11,1] and b = 61,
we could writeb =3-16+44+3-2+3 1.

Describe a DP algorithm that, given an array A[l,...,n] of positive integers, and a positive integer
b € N returns True if and only if b is a 1-3 subset sum of A. Your algorithm should have asymptotic
runtime complexity at most O(b - n).

3. Recursion: D P can be computed recursively as follows:

DP[0][s] = False 1<s<b (1)

DP[a][0] = True 0<a<bd (2

DPla)[s] = DPJa — 1][s] oxr DP[a — 1][s — Ala]] or DP[a —1][s —3- A[a]] 1<a<n, (3)
1<s<b.

Note that in equation (3), the entries ‘DP[a — 1][s — A[a]]’ and ‘DP[a — 1][s — 3 - A[a]]’ might fall
outside the range of the table, in which case we treat them as False.



Exercise 7.3 Road trip.

You are planning a road trip for your summer holidays. You want to start from city Cy, and follow the
only road that goes to city C), from there. On this road from Cj to C,, there are n — 1 other cities
Ci,...,Cy_1 that you would be interested in visiting (all cities C1, ..., Cy_1 are on the road from Cp
to Cy,). For each 0 < ¢ < m, the city C; is at kilometer k; of the road for some given 0 = ko < k1 <
oo < kpo1 < kp.

You want to decide in which cities among C1, . .., Cy,—1 you will make an additional stop (you will stop
in Cp and C,, anyway). However, you do not want to drive more than d kilometers without making a
stop in some city, for some given value d > 0 (we assume that k; < ki_; + d for all ¢ € [n] so that
this is satisfiable), and you also don’t want to travel backwards (so from some city C; you can only go
forward to cities C; with j > 1).



1. Dimensions of the DP table: The DP table is linear, and its size is n + 1.
2. Subproblems: D P[i] is the number of possible routes from Cy to C; (which stop at C;).
3. Recursion: Initialize DP[0] = 1.
For every i > 0, we can compute D P[i] using the formula
DPfi]= Y DPj. @
0<j<i
ki <k;+d

This recursion is correct since city C; can be reached from Cj (for 0 < j < 4) if and only if
k; < k;j + d. Summing up the number of routes from Cj to these C;, we get the number of
routes from Cy to Cj.

4. Calculation order: We can calculate the entries of DP as follows:
fori=0...ndo

Compute DPJ[i).
5. Extracting the solution: All we have to do is read the value at DP[n].

6. Running time: For i = 0, DPJ[0] is computed in O(1) time. For ¢ > 1, the entry DPJi] is
computed in O(%) time (as we potentially need to take the sum of ¢ entries). Therefore, the total
runtime is O(1) + Y"1, O(i) = O(n?).



Exercise 7.4  String counting (1 point).

Given a binary string S € {0,1}" of length n, let f(S) be the number of times “11” occurs in the
string, i.e. the number of times a 1 is followed by another 1. In particular, the occurrences do not need
to be disjoint. For example f(“111011”) = 3 because the string contains three 1 (underlined) that are
followed by another 1. Given n and k, the goal is to count the number of binary strings S of length n
with f(S) = k.

Describe a DP algorithm that, given positive integers n and k with k < n, reports the required number.
Your solution should have complexity at most O(nk).



1. Dimensions of the DP table: DP[1...n][0...k][0...1].

2. Subproblems: The entry DP/[i][4][]] describes the number of strings of length ¢ with j occurrences
of “11” that end in I.

w

. Recursion: The base cases for i = 1 are given by DP[1][0][0] = 1 (the string “0”), DP[1][0][1] = 1
(the string “17), DP[1][4][0] = 0 and DP[1][j][1] = 0 for 1 < j < k. The update rule is as follows:
For1l <4 <nand0 < j <k, to get a string of length ¢ with j occurrences of “11” ending in 0, we
can append “0” to a string of length ¢ — 1 with j occurrences of “11” ending in 0 or 1, which gives

DPi[j][0] = DP[i — 1][5]0] + DP[i — 1][5][1].

To get a string of length ¢ with j occurrences of “11” ending in 1, we can append “1” to a string of
length i —1 with j occurrences of “11” ending in 0 or to a string of length ¢ — 1 with j — 1 occurrences
of “11” ending in 1 (if j > 0). Thus,

DP[i — 1][5][0], ifj=0

DLl = {DP[Z’ —1[5)[0] + DPJi — 1][j - 1[1], ifj > 0.






What is a Graph?

What is a Graph?



Motivation: Graphs Are Everywhere

Three examples of real-world problems:
1. Reachability 2. Shortest Paths

o

O

Social Networks
" Can Alice reach Bob through

3. Spanning Trees

Network Design
" Connect all cities with minimum
railway length”

Navigation
" Fastest route from home to

H " H ity?"
friends? university

Graphs provide a unifying language to model relationships and solve a large number of
problems!

What is a Graph?



Definition: What is a Graph?

Definition 1.1 (Graph)
A graph G is a pair G = (V/, E), where:
e V is a finite, non-empty set of vertices (or nodes)
o EC (%) ={{x,y} | x.y € V,x #y} is a set of edges

o An edge {u,v} € E connects vertices u and v

e We write {u, v} for an edge

Note: By this definition, we exclude loops (edges from a vertex to itself) and multiple edges
between the same pair of vertices.

What is a Graph?



Example: A Simple Graph

Graph G = (V,E)
V =1{1,23,4}
E ={{1,2},{1,3},{2,3},{2,4},{3,4}}

Properties:
@ 4 vertices: |V|=4
o 5 edges: |[E|=5

What is a Graph?



Directed vs. Undirected Graphs

Undirected Graph

Directed Graph (Digraph)
@ Edges have no direction

e Edges have direction (arrows)

o {u,v}={v,u} o (u,v)#(v,u)
@ Examples: friendships, physical
connections

D—

Today’s focus: We'll primarily work with undirected graphs, but the concepts extend
naturally to directed graphs.

@ Examples: one-way streets

What is a Graph?



Key Definitions

Adjacency and Incidence

Let G = (V,E) be a graph, u,v € V, and e € E.

@ Vertices u and v are adjacent if {u,v} € E

@ u and v are called the endpoints of edge e = {u, v}

@ A vertex u and an edge e are incident if v is an endpoint of e

@ u and v are adjacent
@ e is incident to both v and v

@ u and w are also adjacent

What is a Graph?



Neighborhood and Degree

Definition 1.2 (Neighborhood and Degree)

For a vertex v € V in graph G = (V, E):
@ The neighborhood of v is: Ng(v) :={ue V| {v,u} € E}
@ The degree of v is: deg.(v) := |Ng(v)]

For vertex v:
e N(v)={a,b,c}

o deg(v)=3
Other degrees:
o deg(a) =
o deg(b) =2
e deg(c)=1
o deg(d) =1

What is a Graph?



Connectedness and Connected Components
Connected Graph

Definition: Reachability

A vertex u reaches v (written u ~~ v) if there exists a path from
utov.

Definition: Connected

A graph G is connected if every vertex reaches every other vertex.

1 connected component

Definition: Connected Component Disconnected Graph

A connected component is a maximal connected subgraph and
the equivalence class of the "reaches” relation.

Note: Connected components partition the vertices. Each vertex
belongs to exactly one component. T

no path

3 connected components

What is a Graph?



Special Types of Graphs

Complete Graph K, Cycle C,
Path P,
Linear connection
All vertices pairwise connected Circular connection Ps (5 vertices, 4 edges)
Ks (5 vertices, 10 edges) Cs (6 vertices, 6 edges)

These are canonical examples that appear frequently in graph theory and algorithms.

What is a Graph?



Your Turn: Maximum Number of Edges

Determine the maximum number of edges a Graph G = (V, E) can have, i.e., the number of
edges in the complete graph K, in terms of n.

Discuss with your neighbor (2-3 minutes)

What is a Graph?



Special Types of Graphs - Trees

Definition 1.4 (Tree)

An undirected graph G = (V,E) is a tree if it is:
@ Connected, and

@ Acyclic (contains no cycles).

A forest is an acyclic graph (i.e., a collection of disjoint trees).

Example: A Tree Not a Tree (Has a cycle) Not a Tree (A forest)

Connected and Acyclic Connected, but not acyclic Acyclic, but not connected

What is a Graph?



How to Represent a Graph?

Two main data structures for storing graphs:

Adjacency Matrix Adjacency List

A=

o= O
= O O
—_ o0 O
o == O

Alillj] = 1 if edge {i,;} exists Each vertex stores its neighbors

What is a Graph?



Adjacency Matrix vs. Adjacency List: The Tradeoff

Operation | Adjacency Matrix | Adjacency List
Space T ove | o(vi+E)
Check if edge {u, v} exists | 0(1) | O(min{deg(u), deg(v)})
Find all neighbors of v | o(|V)) | O(deg(v))

Add edge | 0(1) | 0(1)

Remove edge {u, v} ‘ 0o(1) | O(deg(u) + deg(v))

Use Adjacency Matrix when:
@ Dense graphs (|E| ~ |V/|?)
@ Need fast edge lookups
@ Graph is small

Use Adjacency List when:
e Sparse graphs (|E| < |V[?)
o Need to iterate over neighbors

o Graph is large

[ Most real-world graphs are sparse, so adjacency lists are typically preferred! ]

What is a Graph?



Properties of Graphs

Properties of Graphs



The Handshake Lemma

Theorem 1.2 (Handshake Lemma)

For every graph G = (V, E):

> deg(v) = 2|E|
veV
Degrees:
e a o deg(l) =2
@ deg(2) =2
@ deg(3) =2
@ deg(4) =2

e ° d>odeg(v)=24+24+24+2=38

|[E| =4,502|E| =8V

Properties of Graphs



Proof of the Handshake Lemma

Intuition: Each edge contributes 2 to the sum of degrees (once for each endpoint).
o Consider the sum ., deg(v)
@ This counts how many times vertices are incident to edges
o Each edge e = {u, v} has exactly 2 endpoints: v and v

@ So edge e is counted exactly twice in the sum:

o Once when counting deg(u)
e Once when counting deg(v)

@ Since there are |E| edges, and each is counted twice:

> deg(v) = 2|E|

veV

O

Properties of Graphs



A Surprising Consequence

In every graph G = (V, E), the number of vertices with odd degree is even.

Let’s prove this together!

@ Let Veyen = vertices with even degree
o Let V,qq = vertices with odd degree

@ We know: V = Viyen U Voda (disjoint union)

Your task: Use the Handshake Lemma to prove |Voq4| is even.

Properties of Graphs



Proof: Number of Odd-Degree Vertices is Even

Proof:
Work through the proof with your neighbor (2-3 minutes)
deg(v)?

Hint: What can you say about the parity of ) .,

Properties of Graphs



Eulerian Walks

Eulerian Walks



Important Concepts: Walks, Paths, and Cycles

Definitions

Let G = (V, E) be a graph. A sequence of vertices (v, v1, ..., V) is:

o Awalk if {v;,vi;1} € Eforall 0<i<k-1
o The length is k (number of edges)
o Vertices can be repeated

@ A closed walk if it is a walk, kK > 2, and vy = v,
o Starts and ends at the same vertex

o A path if it is a walk and all vertices are distinct (v; # v; for i # j)

o No vertex is visited twice

@ A cycle if it is a closed walk, k > 3, and all vertices except vy = vi are distinct
o A closed path (returns to start)

Eulerian Walks



Eulerian Walks and Hamiltonian Paths

Eulerian Concepts (about edges): Hamiltonian Concepts (about vertices):
@ An Eulerian walk is a walk that contains e A Hamiltonian path is a path that
every edge exactly once contains every vertex
@ A closed Eulerian walk is a closed walk e A Hamiltonian cycle is a cycle that
that contains every edge exactly once contains every vertex

Traverses all edges Visits all vertices

Key Distinction: Eulerian = edges, Hamiltonian = vertices

Eulerian Walks



Euler's Answer: When Does an Eulerian Tour Exist?

Theorem 1.31 (Euler's Theorem)
A connected graph G has an Eulerian tour if and only if every vertex has even degree.

Why does this make sense?
@ Every time we enter a vertex, we must also leave it

@ This uses up 2 edges at that vertex

o If we traverse all edges exactly once, we must enter/leave each vertex the same number of
times
— Each vertex must have even degree!

Eulerian Walks



Proof Strategy

We prove both directions:

=

/;\
\V

=

All vertices have

Closed Eulerian
even degree

walk exists

Eulerian Walks



Proof: Direction = (Easy)

Assume: There exists a closed Eulerian walk W
Show: All vertices have even degree

enter \ /) leave
enter / \\ leave

Each visit uses 2 edges

Pick any vertex v. In walk W, every time we pass through v, we use 2 edges (one in, one out).
This holds even for the start/end vertex.

Therefore: deg(v) = 2 X (# of visits to v) is even. O

Eulerian Walks



Proof: Direction < (Hard) - Part 1

Assume: All vertices have even degree and G is connected
Show: A closed Eulerian walk exists

Construction: Start at any vertex vy. Walk randomly, never repeating an edge.

Key Observation

Claim: This walk must eventually return to vg.

Proof: Suppose the walk gets stuck at vertex u # vy. During the walk, we visited u
some number of times (say k times) before getting stuck. Each visit used 2 edges. Plus
the final arrival used 1 edge.

Total edges used at u: 2k + 1 (odd number). But deg(u) is even! So there must be
unused edges at u.

Contradiction! We're not stuck. Therefore u = vy.

\. J

So we have built a closed walk W starting and ending at vp.

Eulerian Walks



Proof: Direction < (Hard) - Part 2

We have a closed walk W. Does it use all edges?
Case 1: Yes, W uses all edges. Then we're done! W is our closed Eulerian walk. v

Case 2: No, some edges remain unused.

After deleting edges of W, the remaining graph may be disconnected. But each connected
component still has all vertices with even degree (we removed 2 edges from each vertex
on W). So we can apply the same procedure to each component independently!

Extension Step: Since G is connected, there exists a vertex u on walk W that has unused
edges. Starting from u, build a new closed walk W’ (using the same method as before).

Merge the walks: Insert W’ into W at vertex u:

. det )
Follow W until v =%  Follow W/ =% Continue W

Repeat this process. Since G has finitely many edges, we eventually use them all. O

[EELRUEINS



Visual Example: Building a Closed Eulerian Walk



What About Eulerian Walks (Not Tours)?

Relaxation: What if we don't need to return to the start?

Theorem (Eulerian Walk)

A connected graph has an Eulerian walk (but not a tour) if and only if it has exactly 2
vertices of odd degree.

Intuition:
@ The walk must start at one odd-degree vertex

@ It must end at the other odd-degree vertex

o All other vertices must have even degree (enter = leave)

Degrees: S=3, A=2, B=2, T=3
Walk: S = A>T —->B—>S—>T
(Starts at S, ends at T)

Eulerian Walks




Questions?

Eulerian Walks



Additional Practice

Additional Practice



Sufficient Condition for Cycles

Lemma: If a graph G has deg(v) > 2 for every vertex v, then G must contain a cycle.

Additional Practice



CodeExpert - Determine if a Graph is Eulerian

Like the last two weeks, you can find a CodeExpert template on my website. Copy the
contents of the main file into the main file of the ” Welcome” exercise. Also copy the
custom.in and custom.out test-cases into the corresponding files in " Welcome”.

You are given a graph in the form of an adjacency list, where each vertex is represented by a
natural number 0 < v < n—1, n=|V|, and the neighbors of v can be accessed through
E.get(v) (returns a list of the neighboring vertices).

Implement the eulerian() method such that it determines if the given graph is Eulerian or not.

Note, one condition requires you to check the connectedness, which you have not looked at
in the lecture yet. However, the algorithm to do so is quite intuitive. Give it a shot!

Additional Practice



Peer Grading

Peer Grading



Peer-Grading Exercise

This week's peer-grading exercise is Exercise 7.1
Please follow the usual process:

o Grade the assigned group's submission.

@ Give constructive feedback and upload your feedback to Moodle by 23.59 tonight, at the
latest.

@ Contact me if you don't receive a submission to grade.

Peer Grading



	Mini-Quiz
	Assignment
	What is a Graph?
	Properties of Graphs
	Eulerian Walks
	Additional Practice
	Peer Grading

