Week 8: Introduction to Graph Theory Algorithms & Data Structures

Thorben Klabunde

www.th-kl.ch

November 10, 2025

Agenda

- Mini-Quiz
- 2 Assignment
- 3 What is a Graph?
- Properties of Graphs
- Eulerian Walks
- 6 Additional Practice
- Peer Grading

Mini-Quiz



Exercise 7.1 1-3 subset sums (1 point).

Let $A[1,\ldots,n]$ be an array containing n positive integers, and let $b\in\mathbb{N}$. We want to know if there exists a subset $I\subseteq\{1,2,\ldots,n\}$, together with multipliers $c_i\in\{1,3\},\,i\in I$ such that:

$$b = \sum_{i \in I} c_i \cdot A[i].$$

If this is possible, we say b is a 1-3 subset sum of A. For example, if A = [16, 4, 2, 7, 11, 1] and b = 61, we could write $b = 3 \cdot 16 + 4 + 3 \cdot 2 + 3 \cdot 1$.

Describe a DP algorithm that, given an array $A[1, \ldots, n]$ of positive integers, and a positive integer $b \in \mathbb{N}$ returns True if and only if b is a 1-3 subset sum of A. Your algorithm should have asymptotic runtime complexity at most $O(b \cdot n)$.

Exercise 7.1 1-3 subset sums (1 point).

Let $A[1,\ldots,n]$ be an array containing n positive integers, and let $b\in\mathbb{N}$. We want to know if there exists a subset $I\subseteq\{1,2,\ldots,n\}$, together with multipliers $c_i\in\{1,3\}, i\in I$ such that:

$$b = \sum_{i \in I} c_i \cdot A[i].$$

If this is possible, we say b is a 1-3 subset sum of A. For example, if A = [16, 4, 2, 7, 11, 1] and b = 61, we could write $b = 3 \cdot 16 + 4 + 3 \cdot 2 + 3 \cdot 1$.

Describe a DP algorithm that, given an array $A[1, \ldots, n]$ of positive integers, and a positive integer $b \in \mathbb{N}$ returns True if and only if b is a 1-3 subset sum of A. Your algorithm should have asymptotic runtime complexity at most $O(b \cdot n)$.

3. Recursion: DP can be computed recursively as follows:

$$DP[a][0] =$$
True $0 \le a \le b$ (2)

$$DP[a][s] = DP[a-1][s] \text{ or } DP[a-1][s-A[a]] \text{ or } DP[a-1][s-3\cdot A[a]] \quad 1 \le a \le n, \quad (3)$$

Note that in equation (3), the entries ${}^{\iota}DP[a-1][s-A[a]]$ and ${}^{\iota}DP[a-1][s-3\cdot A[a]]$ might fall outside the range of the table, in which case we treat them as False.

Exercise 7.3 Road trip.

You are planning a road trip for your summer holidays. You want to start from city C_0 , and follow the only road that goes to city C_n from there. On this road from C_0 to C_n , there are n-1 other cities C_1,\ldots,C_{n-1} that you would be interested in visiting (all cities C_1,\ldots,C_{n-1} are on the road from C_0 to C_n). For each $0 \le i \le n$, the city C_i is at kilometer k_i of the road for some given $0 = k_0 < k_1 < \ldots < k_{n-1} < k_n$.

You want to decide in which cities among C_1,\ldots,C_{n-1} you will make an additional stop (you will stop in C_0 and C_n anyway). However, you do not want to drive more than d kilometers without making a stop in some city, for some given value d>0 (we assume that $k_i< k_{i-1}+d$ for all $i\in [n]$ so that this is satisfiable), and you also don't want to travel backwards (so from some city C_i you can only go forward to cities C_j with j>i).

- 1. Dimensions of the DP table: The DP table is linear, and its size is n+1.
- 2. Subproblems: DP[i] is the number of possible routes from C_0 to C_i (which stop at C_i).
- 3. *Recursion*: Initialize DP[0] = 1.

For every i > 0, we can compute DP[i] using the formula

$$DP[i] = \sum_{\substack{0 \le j < i \\ k_i \le k_j + d}} DP[j]. \tag{4}$$

This recursion is correct since city C_i can be reached from C_j (for $0 \le j < i$) if and only if $k_i \le k_j + d$. Summing up the number of routes from C_0 to these C_j , we get the number of routes from C_0 to C_i .

4. Calculation order. We can calculate the entries of DP as follows:

for
$$i = 0 \dots n$$
 do
Compute $DP[i]$.

- 5. Extracting the solution: All we have to do is read the value at DP[n].
- 6. Running time: For i=0, DP[0] is computed in O(1) time. For $i\geq 1$, the entry DP[i] is computed in O(i) time (as we potentially need to take the sum of i entries). Therefore, the total runtime is $O(1)+\sum_{i=1}^n O(i)=O(n^2)$.

Exercise 7.4 String counting (1 point).

Given a binary string $S \in \{0,1\}^n$ of length n, let f(S) be the number of times "11" occurs in the string, i.e. the number of times a 1 is followed by another 1. In particular, the occurrences do not need to be disjoint. For example f(``111011'') = 3 because the string contains three 1 (underlined) that are followed by another 1. Given n and k, the goal is to count the number of binary strings S of length n with f(S) = k.

Describe a DP algorithm that, given positive integers n and k with k < n, reports the required number. Your solution should have complexity at most O(nk).

- 1. Dimensions of the DP table: $DP[1 \dots n][0 \dots k][0 \dots 1]$.
- 2. Subproblems: The entry DP[i][j][l] describes the number of strings of length i with j occurrences of "11" that end in l.
- 3. Recursion: The base cases for i=1 are given by DP[1][0][0]=1 (the string "0"), DP[1][0][1]=1 (the string "1"), DP[1][j][0]=0 and DP[1][j][1]=0 for $1\leq j\leq k$. The update rule is as follows: For $1< i\leq n$ and $0\leq j\leq k$, to get a string of length i with j occurrences of "11" ending in 0, we can append "0" to a string of length i=1 with j=10 occurrences of "11" ending in 0 or 1, which gives

$$DP[i][j][0] = DP[i-1][j][0] + DP[i-1][j][1].$$

To get a string of length i with j occurrences of "11" ending in 1, we can append "1" to a string of length i-1 with j occurrences of "11" ending in 0 or to a string of length i-1 with j-1 occurrences of "11" ending in 1 (if j>0). Thus,

$$DP[i][j][1] = \begin{cases} DP[i-1][j][0], & \text{if } j = 0\\ DP[i-1][j][0] + DP[i-1][j-1][1], & \text{if } j > 0. \end{cases}$$

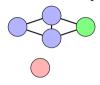
Assignment

What is a Graph?

Motivation: Graphs Are Everywhere

Three examples of real-world problems:

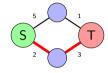
1. Reachability



Social Networks

"Can Alice reach Bob through friends?"

2. Shortest Paths



Navigation

"Fastest route from home to university?"

3. Spanning Trees

Network Design

"Connect all cities with minimum railway length"

Key Insight

Graphs provide a **unifying language** to model relationships and solve a large number of problems!

Definition: What is a Graph?

Definition 1.1 (Graph)

A graph G is a pair G = (V, E), where:

- V is a finite, non-empty set of **vertices** (or *nodes*)
- $E \subseteq \binom{V}{2} := \{\{x,y\} \mid x,y \in V, x \neq y\}$ is a set of **edges**
- An edge $\{u, v\} \in E$ connects vertices u and v
- We write $\{u, v\}$ for an edge

Note: By this definition, we exclude loops (edges from a vertex to itself) and multiple edges between the same pair of vertices.

Example: A Simple Graph

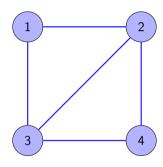
Graph
$$G = (V, E)$$

$$V = \{1, 2, 3, 4\}$$

$$E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}$$

Properties:

- 4 vertices: |V| = 4
- 5 edges: |E| = 5



Directed vs. Undirected Graphs

Undirected Graph

- Edges have no direction
- $\{u, v\} = \{v, u\}$
- Examples: friendships, physical connections

Directed Graph (Digraph)

- Edges have direction (arrows)
- $(u, v) \neq (v, u)$
- Examples: one-way streets

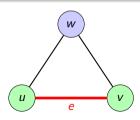
Today's focus: We'll primarily work with **undirected graphs**, but the concepts extend naturally to directed graphs.

Key Definitions

Adjacency and Incidence

Let G = (V, E) be a graph, $u, v \in V$, and $e \in E$.

- Vertices u and v are **adjacent** if $\{u, v\} \in E$
- u and v are called the **endpoints** of edge $e = \{u, v\}$
- A vertex u and an edge e are **incident** if u is an endpoint of e



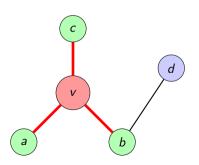
- u and v are adjacent
- \bullet e is **incident** to both u and v
- u and w are also adjacent

Neighborhood and Degree

Definition 1.2 (Neighborhood and Degree)

For a vertex $v \in V$ in graph G = (V, E):

- The **neighborhood** of v is: $N_G(v) := \{u \in V \mid \{v, u\} \in E\}$
- The **degree** of v is: $deg_G(v) := |N_G(v)|$



For vertex v:

- $N(v) = \{a, b, c\}$
- deg(v) = 3

Other degrees:

- $\deg(a) = 1$
- $\deg(b) = 2$
- $\deg(c) = 1$
- $\deg(d) = 1$

Mini-Quiz Assignment What is a Graph? Properties of Graph

Connectedness and Connected Components

Definition: Reachability

A vertex u reaches v (written $u \rightsquigarrow v$) if there exists a path from u to v.

Definition: Connected

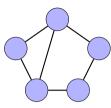
A graph ${\it G}$ is **connected** if every vertex reaches every other vertex.

Definition: Connected Component

A **connected component** is a maximal connected subgraph and the equivalence class of the "reaches" relation.

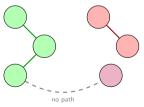
Note: Connected components partition the vertices. Each vertex belongs to exactly one component.

Connected Graph



1 connected component

Disconnected Graph



3 connected components

Special Types of Graphs

Complete Graph K_n

All vertices pairwise connected K_5 (5 vertices, 10 edges)

Cycle C_n

Circular connection C_6 (6 vertices, 6 edges)

Path P_n

Linear connection P_5 (5 vertices, 4 edges)

These are canonical examples that appear frequently in graph theory and algorithms.

Your Turn: Maximum Number of Edges

Determine the maximum number of edges a Graph G = (V, E) can have, i.e., the number of edges in the complete graph K_n in terms of n.

Discuss with your neighbor (2-3 minutes)

Special Types of Graphs - Trees

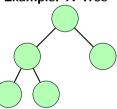
Definition 1.4 (Tree)

An undirected graph G = (V, E) is a **tree** if it is:

- Connected, and
- Acyclic (contains no cycles).

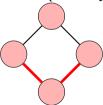
A forest is an acyclic graph (i.e., a collection of disjoint trees).

Example: A Tree



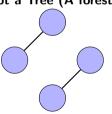
Connected and Acyclic

Not a Tree (Has a cycle)



Connected, but not acvelic

Not a Tree (A forest)



Acyclic, but not connected

How to Represent a Graph?

Two main data structures for storing graphs:

Adjacency Matrix

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

A[i][j] = 1 if edge $\{i, j\}$ exists

Adjacency List

1: {2,3}

2: {1,4

 $3: \{1,4\}$

4: $\{2,3\}$

Each vertex stores its neighbors

Adjacency Matrix vs. Adjacency List: The Tradeoff

Operation	Adjacency Matrix	Adjacency List
Space	$O(V ^2)$	O(V + E)
Check if edge $\{u, v\}$ exists	O(1)	$O(\min\{\deg(u),\deg(v)\})$
Find all neighbors of v	O(V)	$O(\deg(v))$
Add edge	O(1)	O(1)
Remove edge $\{u, v\}$	O(1)	$O(\deg(u) + \deg(v))$

Use Adjacency Matrix when:

- Dense graphs $(|E| \approx |V|^2)$
- Need fast edge lookups
- Graph is small

Use Adjacency List when:

- Sparse graphs ($|E| \ll |V|^2$)
- Need to iterate over neighbors
- Graph is large

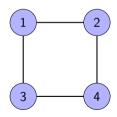
Most real-world graphs are sparse, so adjacency lists are typically preferred!

The Handshake Lemma

Theorem 1.2 (Handshake Lemma)

For every graph G = (V, E):

$$\sum_{v \in V} \deg(v) = 2|E|$$



Degrees:

- deg(1) = 2
- deg(2) = 2
- deg(3) = 2
- deg(4) = 2

$$\sum_{|E|=4, \text{ so } 2|E|=8} |E| = 4, \text{ so } 2|E| = 8 \checkmark$$

Proof of the Handshake Lemma

Proof.

Intuition: Each edge contributes 2 to the sum of degrees (once for each endpoint).

- Consider the sum $\sum_{v \in V} \deg(v)$
- This counts how many times vertices are incident to edges
- Each edge $e = \{u, v\}$ has exactly 2 endpoints: u and v
- So edge e is counted exactly twice in the sum:
 - Once when counting deg(u)
 - Once when counting deg(v)
- Since there are |E| edges, and each is counted twice:

$$\sum_{v\in V} \deg(v) = 2|E|$$

Properties of Graphs

A Surprising Consequence

Corollary 1.3

In every graph G = (V, E), the number of vertices with odd degree is even.

Let's prove this together!

- Let $V_{\text{even}} = \text{vertices with even degree}$
- ullet Let $V_{
 m odd}=$ vertices with odd degree
- ullet We know: $V=V_{\mathsf{even}}\cup V_{\mathsf{odd}}$ (disjoint union)

Your task: Use the Handshake Lemma to prove $|V_{odd}|$ is even.

Proof: Number of Odd-Degree Vertices is Even

Proof:

Work through the proof with your neighbor (2-3 minutes)

Hint: What can you say about the parity of $\sum_{v \in V} \deg(v)$?

Important Concepts: Walks, Paths, and Cycles

Definitions

Let G = (V, E) be a graph. A sequence of vertices (v_0, v_1, \dots, v_k) is:

- A walk if $\{v_i, v_{i+1}\} \in E$ for all $0 \le i \le k-1$
 - The **length** is *k* (number of edges)
 - Vertices can be repeated
- A **closed walk** if it is a walk, $k \ge 2$, and $v_0 = v_k$
 - Starts and ends at the same vertex
- A **path** if it is a walk and all vertices are distinct $(v_i \neq v_i \text{ for } i \neq j)$
 - No vertex is visited twice
- A **cycle** if it is a closed walk, $k \geq 3$, and all vertices except $v_0 = v_k$ are distinct
 - A closed path (returns to start)

Eulerian Walks and Hamiltonian Paths

Eulerian Concepts (about edges):

- An Eulerian walk is a walk that contains every edge exactly once
- A closed Eulerian walk is a closed walk that contains every edge exactly once

Traverses all edges

Hamiltonian Concepts (about vertices):

- A **Hamiltonian path** is a path that contains every vertex
- A Hamiltonian cycle is a cycle that contains every vertex

Visits all vertices

Key Distinction: Eulerian = *edges*, Hamiltonian = *vertices*

Euler's Answer: When Does an Eulerian Tour Exist?

Theorem 1.31 (Euler's Theorem)

A connected graph G has an Eulerian tour if and only if every vertex has even degree.

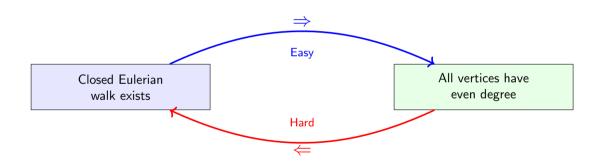
Why does this make sense?

- Every time we enter a vertex, we must also leave it
- This uses up 2 edges at that vertex
- If we traverse all edges exactly once, we must enter/leave each vertex the same number of times

⇒ Each vertex must have even degree!

Proof Strategy

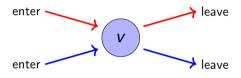
We prove both directions:



Proof: Direction \Rightarrow (Easy)

Assume: There exists a closed Eulerian walk W

Show: All vertices have even degree



Each visit uses 2 edges

Pick any vertex v. In walk W, every time we pass through v, we use 2 edges (one in, one out). This holds even for the start/end vertex.

Therefore: $deg(v) = 2 \times (\# \text{ of visits to } v)$ is even.

Proof: Direction \leftarrow (Hard) - Part 1

Assume: All vertices have even degree and *G* is connected

Show: A closed Eulerian walk exists

Construction: Start at any vertex v_0 . Walk randomly, never repeating an edge.

Key Observation

Claim: This walk must eventually return to v_0 .

Proof: Suppose the walk gets stuck at vertex $u \neq v_0$. During the walk, we visited u some number of times (say k times) before getting stuck. Each visit used 2 edges. Plus the final arrival used 1 edge.

Total edges used at u: 2k + 1 (odd number). But deg(u) is even! So there must be unused edges at u.

Contradiction! We're not stuck. Therefore $u = v_0$.

So we have built a closed walk W starting and ending at v_0 .

Proof: Direction \leftarrow (Hard) - Part 2

We have a closed walk W. Does it use all edges?

Case 1: Yes, W uses all edges. Then we're done! W is our closed Eulerian walk. \checkmark

Case 2: No, some edges remain unused.

Notice

After deleting edges of W, the remaining graph may be disconnected. But each connected component still has all vertices with even degree (we removed 2 edges from each vertex on W). So we can apply the same procedure to each component independently!

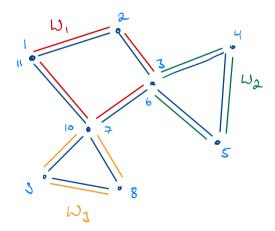
Extension Step: Since G is connected, there exists a vertex u on walk W that has unused edges. Starting from u, build a new closed walk W' (using the same method as before).

Merge the walks: Insert W' into W at vertex u:

Follow W until $u \xrightarrow{\text{detour}} \text{Follow } W' \xrightarrow{\text{resume}} \text{Continue } W$

Repeat this process. Since G has finitely many edges, we eventually use them all.

Visual Example: Building a Closed Eulerian Walk



What About Eulerian Walks (Not Tours)?

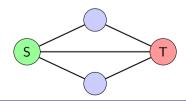
Relaxation: What if we don't need to return to the start?

Theorem (Eulerian Walk)

A connected graph has an Eulerian walk (but not a tour) if and only if it has exactly 2 vertices of odd degree.

Intuition:

- The walk must start at one odd-degree vertex
- It must end at the other odd-degree vertex
- All other vertices must have even degree (enter = leave)



Degrees: S=3, A=2, B=2, T=3 Walk: $S \rightarrow A \rightarrow T \rightarrow B \rightarrow S \rightarrow T$ (Starts at S, ends at T)

Questions?

Sufficient Condition for Cycles

Lemma: If a graph G has $deg(v) \ge 2$ for every vertex v, then G must contain a cycle.

CodeExpert - Determine if a Graph is Eulerian

Like the last two weeks, you can find a CodeExpert template on my website. **Copy** the contents of the **main file** into the main file of the "**Welcome**" exercise. Also copy the **custom.in** and **custom.out** test-cases into the corresponding files in "Welcome".

You are given a graph in the form of an **adjacency list**, where **each vertex** is represented by a **natural number** $0 \le v \le n-1$, n = |V|, and the **neighbors** of v can be **accessed through** $E.\mathbf{get}(v)$ (returns a list of the neighboring vertices).

Implement the eulerian() method such that it determines if the given graph is Eulerian or not.

Note, one condition requires you to check the **connectedness**, which you have not looked at in the lecture yet. However, the algorithm to do so is quite intuitive. Give it a shot!

Peer-Grading Exercise

This week's peer-grading exercise is **Exercise 7.1**

Please follow the usual process:

- Grade the assigned group's submission.
- Give constructive feedback and upload your feedback to Moodle by 23.59 tonight, at the latest.
- Contact me if you don't receive a submission to grade.