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Feedback Assignments 6 & 7

Common points from the last two assignments:

DP Solution Structure: Once you have the correct subproblem and recursion, you can
solve the theory DP exercises very mechanically and minimally. The important aspect is
that you formalize your subproblem (meaning of the DP-entry), the recurrence and the
computation order properly and provide a justification for the correctness. Have a look at

the Master Solution for the expected structure.

Precision: It is important that you are precise. This includes specifying variables

whenever you use them (once you use a variable, e.g., i , for the first time (e.g.,
DP[i ] = . . ., a specification needs to follow (e.g.: ”for i → N with 1 ↑ i ↑ n or at least
1 ↑ i ↑ n - su!cient when talking about indeces).

Justification: Your justification can be quite informal (no formal proof like an
induction required) but should explain why your recurrence computes the correct result
using the meaning of the entries.

Remember to check the detailed feedback on Moodle! Reach out if you have any questions
regarding the corrections.
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We proceed by induction on 1.
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Proof Idea: Consider the graph C = (VE) , where V = El, . . . , n] and E=[hi ,jblijeV , itj]
.

Notice that each vertex represents one numberend each edge represents one donino.

Notice then that we can reduce our problem of finding a domino-line to the problem
of Giarding ~ Fulerian walk in G

, since we need to use every edge/demino exactly once and

are forced to join dominoes by number.

Finally , notice that G = Kn => VueV (deg(v) = 1-1) . We know that n-1 must be even for on Eulerian Walk to exist
.

It follows that n = 2 ora must be odd for a domino line to exist
.
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Motivation: Task Scheduling with Dependencies

Real-world problem: Getting dressed in the morning!

Dependencies:

Socks → Shoes

Underwear → Pants → Belt

Shirt → Jacket

Valid order:

Underwear, Shirt, Socks, Pants, Belt, Shoes, Jacket

Socks Shoes

Underwear Pants Belt

Shirt Jacket

Question: Can we always find a valid ordering? What if there are circular dependencies?
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When Ordering is Impossible

Circular dependencies create problems!

A

B C

Directed cycle: A → B → C → A

Problem:

Each node has a predecessor

No valid starting point!

Cannot produce a linear ordering

Key Theorem (Preview)

A directed graph has a topological ordering if and only if it contains no directed cycles.
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Definition: Directed Graphs

Definition 2.1 (Directed Graph)

A directed graph (or digraph) G = (V ,E ) consists of:

V : a finite set of vertices

E → V ↑ V : a set of ordered pairs called directed edges

We write (u, v) ↓ E for a directed edge from u to v .

Important di!erence from undirected graphs:

Undirected: {u, v} = {v , u} (order doesn’t matter)

Directed: (u, v) ↔= (v , u) (order matters!)

Undirected
u v

Directed
u v
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Terminology for Directed Graphs

Definition 2.2 (Successors and Predecessors)

For a directed edge (u, v) ↓ E :

v is a successor (Nachfolger) of u

u is a predecessor (Vorgänger) of v

Definition 2.3 (In-Degree and Out-Degree)

For a vertex u ↓ V :

degin(u) := |{v | (v , u) ↓ E}| is the in-degree (Eingangsgrad)

degout(u) := |{v | (u, v) ↓ E}| is the out-degree (Ausgangsgrad)

A source is a vertex with degin(u) = 0

A sink is a vertex with degout(u) = 0
S T

source sink
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Paths and Cycles in Directed Graphs

Definition 2.4 (Directed Path)

A directed path from v0 to vk is a sequence of vertices (v0, v1, . . . , vk) where (vi , vi+1) ↓ E for
all 0 ↗ i < k .

Definition 2.5 (Directed Cycle)

A directed cycle is a directed path where:

k ↘ 1 (no self-loops)

v0 = vk (starts and ends at same vertex)

All other vertices are distinct

Directed Path

v0 v1 v2 v3

Directed Cycle

v0

v1
v2

v3
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Representing Directed Graphs

Both adjacency matrix and adjacency list work for directed graphs!

Example Graph

1 2

3 4

Adjacency Matrix A

A[u][v ] =

{
1 if (u, v) ↑ E

0 otherwise

A =





0 1 1 0

0 0 0 1

0 0 0 1

0 1 0 0





Adjacency List

1: [2, 3]

2: [4]

3: [4]

4: [2]

Note: Matrix is generally not symmetric for directed graphs!
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Topological Sorting
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Topological Sorting: The Problem

Definition 2.6 (Topological Sorting)

A topological ordering of a directed graph G = (V ,E ) is a linear (total) ordering of vertices
v1, v2, . . . , vn such that:

(vi , vj) ↓ E =≃ i < j

In other words: all edges point ”forward” in the ordering.

A

B

C

D

Valid: A, D, B, C

Also valid: A, B, D, C

Applications:

Task scheduling

Build systems (Makefiles)

Course prerequisites

Compiler dependency resolution
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When Does a Topological Ordering Exist?

Theorem 2.7

A directed graph G has a topological ordering if and only if G is acyclic (has no directed
cycles).

Intuition for ”⇐” (acyclic =≃ topological ordering exists):

If there are no cycles, we can find a sink (vertex with no outgoing edges)

Place the sink at the end of the ordering

Remove it and repeat recursively

This always works because each step maintains acyclicity

Question: Why must an acyclic graph have a sink?
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Algorithm 1: Recursive Sink-Finding

1: function TopSort(G = (V ,E ))
2: if V = ⇒ then

3: return empty list
4: end if

5: Find a sink v in G ω degout(v) = 0
6: Let G → = (V \ {v},E →) where E → = E \ {(u, v) | u ↓ V }
7: L ⇑ TopSort(G →)
8: return L with v appended at the end
9: end function

Correctness:

Each recursive call places a sink at the end

All edges from other vertices point to sinks we’ve already placed

By induction, produces a valid topological ordering

Runtime: O(|V |2) if finding a sink takes O(|V |) time each call.

Can we do better?
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Your Turn: No Backward Paths in Topological Orderings

Claim: Let G = (V ,E ) be a DAG with topological ordering v1, v2, . . . , vn. If i < j , then there
is no directed path from vj to vi .

In other words: you cannot go ”backward” in a topological ordering by following edges.

Prove this claim:

Strategy: Use proof by contradiction and assume i < j but there exists a directed path
vj ⇓ vk1 ⇓ vk2 ⇓ · · · ⇓ vkm ⇓ vi

Time: 3-4 minutes
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Solution: Edges in Topological Orderings

Proof.

We prove this by contradiction.

Suppose there exists an edge (vi , vj) ↓ E and a directed path P from vj to vi .

From the topological ordering:

Since (vi , vj) ↓ E , we have i < j (by definition of topological ordering)

From the path:

Let P : vj ⇓ vk1 ⇓ vk2 ⇓ · · · ⇓ vkm ⇓ vi
By the topological ordering property, each edge goes ”forward”:

(vj , vk1) ↑ E =↓ j < k1
(vk1 , vk2) ↑ E =↓ k1 < k2
.
.
.

(vkm , vi ) ↑ E =↓ km < i

By transitivity: j < k1 < k2 < · · · < km < i , so j < i

But we have both i < j and j < i , a contradiction. No such path can exist.
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Understanding DAG Structure

What does this tell us?

Key Insight

In a topologically sorted DAG, all edges point ”forward” in the ordering, and there are no

paths that go backward.

v1

v2

v3

v4

v5

v6

Blue edges ”skip ahead” but still go forward

Consequences:

Can process vertices left-to-right

When processing vi , all vertices that vi
depends on have been processed

Enables e”cient algorithms (e.g.,
shortest paths in O(|V |+ |E |))

Application: This structure is why we can compute shortest and even longest paths in
DAGs in linear time—we just process vertices in topological order!
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A Better Approach: Using Depth-First Search

Key insight: Instead of repeatedly finding sinks, we can use DFS!

Observation: When we start at a vertex u and follow a path as far as possible (without
repeating vertices), where do we end up?

u

v

Path from u to v

Claim: If we follow an unmarked path as far as
possible, we must end at a vertex v where:

All successors of v have been visited, OR

v has no successors (is a sink)

If the graph is acyclic, v must be a sink!

This gives us an e!cient way to find vertices to place at the end of our ordering!
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Depth-First Search (DFS)
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Depth-First Search: The Idea

Strategy: Explore as deeply as possible before backtracking

Algorithm sketch:

1 Start at a vertex u
2 Mark u as visited
3 For each unmarked successor v :

Recursively visit v

4 When no unmarked successors remain,
backtrack

A

B C

D E F

1

2

3

4

5

6

Visit order: A, B, D, E, C, F

Key property: DFS explores one branch completely before moving to the next!

Mini-Quiz Assignment Directed Graphs Topological Sorting Depth-First Search (DFS) Peer Grading



DFS: Formal Algorithm

1: function Visit(u)
2: mark u
3: for each successor v of u do

4: if v is unmarked then

5: Visit(v)
6: end if

7: end for

8: end function

1: function DFS(G = (V ,E ))
2: Mark all vertices as unmarked
3: for each u ↓ V do

4: if u is unmarked then

5: Visit(u)
6: end if

7: end for

8: end function

Why the outer loop in DFS?

The graph might be disconnected

Starting from one vertex might not reach all vertices

We need to ensure we visit every vertex

Result: Creates a DFS forest (collection of DFS trees)
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DFS: Visual Example

Graph

A

B
C

D
E

F

G

H
DFS Tree (starting at A)

A

B

E

F G

H

C

D

Tree edges shown above

Observation: The recursion naturally creates a tree structure!
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DFS Runtime Analysis

Theorem 2.8

DFS runs in O(|V |+ |E |) time when using an adjacency list representation.

Proof Idea.

Work done per vertex:

Each vertex u is marked exactly once

When visiting u, we iterate through all its successors

Time for visiting u: O(1 + degout(u))

Total time:

∑

u↑V

O(1 + degout(u)) = O

(
∑

u↑V

1 +
∑

u↑V

degout(u)

)

= O(|V |+ |E |)
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DFS with Timestamps

Enhancement: Record when we enter and exit each vertex

1: function Visit(u)
2: pre[u] ⇑ T ; T ⇑ T + 1
3: mark u
4: for each successor v of u do

5: if v is unmarked then

6: Visit(v)
7: end if

8: end for

9: post[u] ⇑ T ; T ⇑ T + 1
10: end function

1: function DFS(G )
2: T ⇑ 1
3: (mark all unmarked, loop over vertices)
4: end function

Timestamps:

pre[u]: when we first visit u

post[u]: when we finish exploring
from u

Interval notation:

Iu = [pre[u], post[u]]

These intervals reveal important structural

properties!
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DFS Timestamp Example
Graph

A

B C

DE
F

G

H

1/16

2/9 10/15

11/143/8

4/7

5/6

12/13

Pre/Post orders:

Pre-order: A, B, E, F, G, C, D, H

Post-order: G, F, E, B, H, D, C, A

Interval representation:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
B

E
F

G

C
D

H

Nesting property: Intervals either nest (one contains the other) or are disjoint!
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DFS and Topological Sorting

Theorem 2.9

If G is acyclic (a DAG), then the reverse post-order from DFS gives a topological ordering.

Why does this work?

When we finish exploring from vertex u, all vertices reachable from u have already been
finished

So post[u] comes after all descendants of u

If (u, v) ↓ E , then v is explored before we finish u, so post[v ] < post[u]

Reversing post-order puts u before v , as required!

1: function TopologicalSort(G )
2: Run DFS on G , computing post-order numbers
3: return vertices in reverse post-order
4: end function

Runtime: O(|V |+ |E |)
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Edge Classification in DFS

For edge (u, v):

Tree edge: v is unmarked when explored
from u

Forms the DFS tree/forest

Back edge: Iu → Iv
Points to an ancestor

Forward edge: Iv → Iu
Points to a descendant (not via tree

edges)

Cross edge: Iu ⇔ Iv = ⇒
Connects di!erent branches

A

B C

D
E

F

— Tree, - - Back, - - Forward, - - Cross

DFS for Cycle Detection: A directed graph has a cycle ⇐≃ DFS finds a back edge!
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Cycle Detection Using DFS

Theorem 2.10

A directed graph G contains a cycle if and only if DFS discovers a back edge.

Proof Sketch.

(≃): Suppose G has a cycle v1 ⇓ v2 ⇓ · · · ⇓ vk ⇓ v1.

Let vi be the first vertex in the cycle visited by DFS

When exploring from vi , we must eventually reach vi↓1 (the predecessor in the cycle)

But vi is still ”active” (not finished), so Ivi→1 → Ivi
Therefore (vi↓1, vi ) is a back edge

(⇐): Suppose DFS finds back edge (u, v) where Iu → Iv .

v is an ancestor of u in the DFS tree

There’s a tree path from v to u

Adding edge (u, v) creates a cycle

This gives us an O(|V |+ |E |) algorithm to detect cycles!
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Your Turn: DFS Interval Property

Claim: In any DFS of a directed graph G , for any two vertices u and v , exactly one of the
following holds:

1 Iu ⇔ Iv = ⇒ (intervals are disjoint), OR
2 Iu → Iv (interval of u is contained in interval of v), OR
3 Iv → Iu (interval of v is contained in interval of u)

where Iu = [pre[u], post[u]] and Iv = [pre[v ], post[v ]].

Prove this claim:

Hints:

Without loss of generality, assume pre[u] < pre[v ] (i.e., we visit u first)

There are two cases to consider: Is v visited before we finish exploring from u?

Time: 4-5 minutes
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Solution: DFS Interval Property

Claim: For any two vertices u and v , exactly one of the following holds: Iu ⇔ Iv = ⇒, OR
Iu → Iv , OR Iv → Iu

Proof.

Without loss of generality, assume pre[u] < pre[v ] (we visit u first).

Case 1: pre[v ] < post[u] (we visit v before finishing u)

This means v was discovered during the exploration from u

We must finish exploring from v before we can finish u

Therefore: pre[u] < pre[v ] < post[v ] < post[u]

Thus Iv → Iu

Case 2: pre[v ] > post[u] (we visit v after finishing u)

The intervals don’t overlap at all

Thus Iu ⇔ Iv = ⇒

These are the only two possibilities, and they’re mutually exclusive.
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DFS - Your Friend and Helper

You are given an undirected graph as an adjacency list. Implement:

1 hasCycle(n, E): Detect if the graph contains a cycle
2 isReachable(E, u, v): Check if there’s a path from u to v
3 countComponents(E): Count the number of connected components

Setup:

Download the template from my website

Copy Main.java to CodeExpert’s ”Welcome” exercise

Copy custom.in and custom.out to corresponding files in ”Welcome” exercise (in the
public/ directory)
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Questions?
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Peer Grading
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Peer-Grading Exercise

This week’s peer-grading exercise is Exercise 8.3d-f

Please follow the usual process:

Grade the assigned group’s submission.

Give constructive feedback and upload your feedback to Moodle by 23.59 tonight, at the
latest.

Contact me if you don’t receive a submission to grade.
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