Week 9: Topological Sort & DFS Algorithms & Data Structures

Thorben Klabunde

th-kl.ch

November 17, 2025

Agenda

- Mini-Quiz
- 2 Assignment
- Oirected Graphs
- Topological Sorting
- Depth-First Search (DFS)
- 6 Peer Grading

Mini-Quiz

```
Let G=(V,E) be connected and assume all vertices of G have even degree. Recall the
algorithm Euler_Walk from the lecture:
Euler_Walk(u):
     if there exists an edge \{u,v\} which is not marked:
           mark the edge \{u, v\}
           Euler_Walk(v)
Suppose we start the recursion with a call to Euler_Walk(u_0) for some vertex u_0 \in V.
 True
           False
 (V)
                                                                                   0
                    We have an even number of marked edges which contain u_0
                    immediately after the start of any call to Euler Walk(u_0).
           (V)
                    Let u' \in V with u' \neq u_0, then we have an even number of
                                                                                   0
                    marked edges which contain u' immediately after the start of
                    any call to Euler_Walk(u').
Scoring method: Subpoints (2)
```

For the initial vertex u_0 , since we start the recursion there, there must be either 0 edges marked (first ever call) or there is an ingoing edge for every outgoing edge, so an even number of marked edges.

For every other vertex $w' \neq u_0$, we have an odd number of edges marked because the first call to u' must have one edge marked already, then the same reasoning as for u_0 means everytime we call $\operatorname{Euler}_-\operatorname{Walk}(u')$ we have +2 edges marked.

We have an even number of marked edges which contain u_0 immediately after the start of any call to Euler_Walk(u_0) .

Let $u'\in V$ with $u'\neq u_0$, then we have an even number of marked edges which contain u' immediately after the start of any call to ${\rm Euler_Walk}(u')$. : False

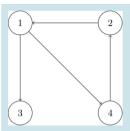
Suppose that G=(V,E) has an Eulerian Walk. Then we can always find an Eulerian Walk of G in time O(|V|).

- True
- False

 ✓

If we have graphs with $|E|=\Omega(|V|^2)$ then we can't even output all edges in the graph, much less an Eulerian Walk.

The correct answer is 'False'.



What adjacency matrix describes the graph above? The indices are in increasing numerical order.

$$\begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

The correct answer is:
$$\begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Suppose we restrict our inputs to graphs G=(V,E) which are connected and satisfy $|E|\geq |V|^2/10$, rather than the class of all graphs. Then, depth-first search (DFS) runs (in the worst case over such graphs) asymptotically in the same time regardless of whether the graph is stored as adjacency lists or as an adjacency matrix.

- True ②
- False

With adjacency lists we have a runtime of O(|V|+|E|) and an adjacency matrix its $O(|V|^2)$ but plugging in $|V|^2 \geq |E| \geq |V|^2/10$, we can see that these have the same asymptotic runtime.

The correct answer is 'True'.

Let G be a directed graph that contains a (directed) cycle. Which of the following statements are true for all such G?

True	False			
○⋈	00	${\it G}$ has no source vertex.	0	
○⋈	00	${\it G}$ has no sink vertex.	0	
⊚⊘	○ ⊗	${\it G}$ does not have a topological sorting of its vertices.	0	

In lecture, we saw that a directed graph with a cycle cannot admit a toplogical sorting. However, if we can have vertices not part of the cycle which act as sources or sinks, for example, consider a directed graph plus an isolated vertex.

 ${\it G}$ has no source vertex.

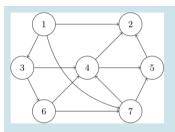
: False

 ${\cal G}$ has no sink vertex.

: False

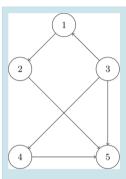
 ${\it G}$ does not have a topological sorting of its vertices.

: True



Which vertex is at the end of every topological sorting of the graph above?

- 0 1. 1
- ⊚ 2. 2 ⊘



In every topological sorting of the graph above, vertex 1 must come before vertex 4.

O True

■ False ⊘

We run depth-first-search (DFS) on a directed graph G=(V,E) which contains a directed cycle. We determine all the pre/post numbers. What can we conclude about the relationship of pre/post numbers? True False (V) For every edge $(u,v)\in E$, we have In lecture, we pre(v) < pre(u) < post(u) < post(v). saw these are only back edges. Not all edges can be back edges. since tree edges are not back edges. (C) There exists some edge $(u,v) \in E$ which has With a directed pre(v) < pre(u) < post(u) < post(v). cycle, we must have a back edge, which is exactly this condition.

Enter Caption

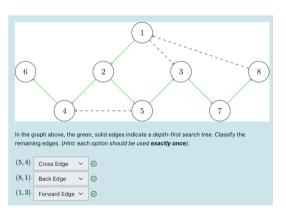
We run depth-first-search (DFS) on a directed graph G=(V,E) and we determine all the pre/post numbers. Then for an edge $(u,v)\in E$, it's possible that pre(u)< pre(v)< post(u)< post(v).

O True

■ False

We saw in lecture this is impossible. It's impossible because if we recurse on u first, then v before returning to u, then we must go back to v first before u.

The correct answer is 'False'.



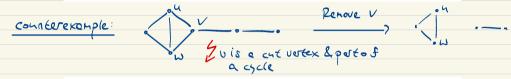
Feedback Assignments 6 & 7

Common points from the last two assignments:

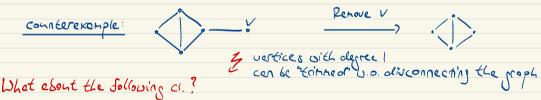
- **DP Solution Structure:** Once you have the correct subproblem and recursion, you can solve the theory DP exercises very mechanically and minimally. The important aspect is that you **formalize** your subproblem (meaning of the DP-entry), the recurrence and the computation order properly and provide a justification for the correctness. Have a **look at** the **Master Solution** for the expected structure.
- **Precision:** It is important that you are **precise**. This includes **specifying variables** whenever you use them (once you use a variable, e.g., i, for the first time (e.g., $DP[i] = \ldots$, a **specification needs to follow** (e.g.: "for $i \in \mathbb{N}$ with $1 \le i \le n$ or at least $1 \le i \le n$ sufficient when talking about indeces).
- Justification: Your justification can be quite informal (no formal proof like an induction required) but should explain why your recurrence computes the correct result using the meaning of the entries.

Remember to check the detailed feedback on Moodle! Reach out if you have any questions regarding the corrections.

a) If a vertex v is part of a cycle, then it is not a cut vertex.



b) If a vertex v is not a cut vertex, then v must be part of a cycle.



"If a vertex u is not a cut vertex and dog(v)=2, then u must be part of a cycle."

pr. True. Let is end u be two neighbors of v. There is a path (u,v,u), Since u is not a cut vortex another path connecting u, is next exist, not leading through u. The existence of a cycle Sollous.

- c) If an edge e is part of a cycle (i.e. e connects two consecutive vertices in a cycle), then it is not a cut edge.
- pr. Let G=(U|E) and e={u,u} EE be perfort a cycle. Suppose for sake of contradiction that e uses a cut edge. Removing a would then disconnect the graph and u could no longer reach u.

 But notice that a is part of a cycle. U.L.O.G. Let this be (u,u2,u3,...,uk,v,u), w; EV for some k > 2 and 2 = 1 = 1 k. Use see that there exists another path (u,u2,u3,...,uk,v) that obes not incl. a.

 Huce, u and u are still connected, a contradiction. The result that sollows.
 - d) If an edge e is not a cut edge, then e must be part of a cycle.
- pr. Follow the definitions above end notice that since e is not a cut edge, u still reaches v and a path $(u_1 u_2, u_3, ..., u_k, v)$ must exist for some $k \ge 2$.
 - We now edd back e to obtain the cycle (4,42,43,..., while proves the result.

R

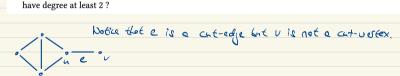
e) If u and v are two adjacent cut vertices, then the edge $e = \{u, v\}$ is a cut edge.

counterexemple:

Notice that us vare cut vertices but e is perfos a cycle => e is Noto cut-edge.

f) If $e=\{u,v\}$ is a cut edge, then u and v are cut vertices. What if we add the condition that u and v have degree at least 2 ?

Connecescomple:



If dep(+) >2 and dep(v) >2, the claim holds (some proof pattern as before, see traster solution).

Exercise 8.4 Introduction to Trees.

In this exercise the goal is to prove a few basic properties of trees (for the definition of a tree, see Definition 1).

(a) A **leaf** is a vertex with degree 1. Prove that in every tree G with at least two vertices there exists a leaf.

(a) Let $G = (V_i E)$ be a tree and $p = (V_{0i}V_{i+1...i}V_{ik})$, well, so a longest path in G.

Consider V_{ik} and suppose that $deg(V_{ik}) > 1$. There must then exist another neighbor $U \neq V_{ik-1}$. But notice that since G is a tree $\{U \notin \{V_{0i-1}, V_{ik-2}\}\}$ otherwise we could construct a cycle $\{U_i, V_{i+1}, \dots, V_{ik-2}, V_{k-1}, V_{ik}, u\}$ for some $i \in \{0, \dots, k-2\}$, a contradiction

Also, $u \notin V \setminus \{u_0, ..., v_{k-1}\}$, otherwise there would exist a strictly longer path $p' = (v_0, ..., v_k, u)$, a contradiction. It solves that no such neighbor u can exist and elap $(v_k) = 1$. Hence, a last exists.

(b) Prove that every tree with n vertices has exactly n-1 edges.

Hint: Prove the statement by using induction on n. In the induction step, use part (a) to find a leaf. Disconnect the leaf from the tree and argue that the remaining subgraph is also a tree. Apply the induction hypothesis and conclude.

We proceed by induction on n.

- B.C.: Let n=1 and notice that no edge can exist. Hence there are O=n-1 edges. Additionally, for n=2, there exists a unique edge. The B.C. Lold.
- I.H.: Assume for some n22 that every tree on n burtices has exactly n-1 edges
- I.S. They let G=(UE) be a tree on AH vertices By (a), G has a least u. Remove u lo obtain G'= G[U(Eus]. Notice that:
 - Da' Les 1 vortices
 - B G'is connected since for any abe Ully, there still exists a path from a to be since in can only be the adjoint of a path. o a' is acyclic since if not then a would also contain a cycle but a is a tree.

ह्य

Hence G'is a Eree end by I.H. must have n-1 edges. It sollows that Ghes (n-1)+1=n edges.

By the princ of Meth. Induction the claim helds for all nell.

(a) A domino set consists of all possible $\binom{6}{2}+6=21$ different tiles of the form [x|y], where x and y are numbers from $\{1,2,3,4,5,6\}$. The tiles are symmetric, so [x|y] and [y|x] is the same tile and appears only once.

Show that it is impossible to form a line of all 21 tiles such that the adjacent numbers of any consecutive tiles coincide like in the example below.

(b) What happens if we replace 6 by an arbitrary $n \ge 2$? For which n is it possible to line up all $\binom{n}{2} + n$ different tiles along a line?

Proof Idea: Consider the graph $G = (U_1 E)_1$ where $U = \{1,...,n\}$ and $E = \{\{i,j\}\}\}$ is $\{i,j\}$.

Notice that each vertex represents one number and each edge represents one down.

Notice then that we can reduce our problem of finding a domino-line to the problem of finding an Fulerien walk in a, since we need to use every egge/domino exactly once end are forced to join dominous sy number.

Finally, notice that $G = K_n =$ $\forall u \in V(deg(u) = n-1)$. De know that n-1 must be even for an Eulerian walk to exist. It follows that n=2 or n must be odd for a domino line to exist.

Directed Graphs

Motivation: Task Scheduling with Dependencies

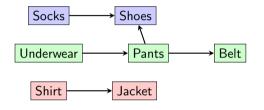
Real-world problem: Getting dressed in the morning!

Dependencies:

- Socks \rightarrow Shoes
- ullet Underwear o Pants o Belt
- ullet Shirt o Jacket

Valid order:

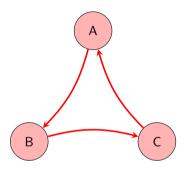
Underwear, Shirt, Socks, Pants, Belt, Shoes, Jacket



Question: Can we always find a valid ordering? What if there are circular dependencies?

When Ordering is Impossible

Circular dependencies create problems!



Directed cycle: $A \rightarrow B \rightarrow C \rightarrow A$

Problem:

- Each node has a predecessor
- No valid starting point!
- Cannot produce a linear ordering

Key Theorem (Preview)

A directed graph has a topological ordering if and only if it contains no directed cycles.

Definition: Directed Graphs

Definition 2.1 (Directed Graph)

A **directed graph** (or *digraph*) G = (V, E) consists of:

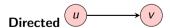
- V: a finite set of vertices
- $E \subseteq V \times V$: a set of **ordered pairs** called **directed edges**

We write $(u, v) \in E$ for a directed edge from u to v.

Important difference from undirected graphs:

- Undirected: $\{u, v\} = \{v, u\}$ (order doesn't matter)
- Directed: $(u, v) \neq (v, u)$ (order matters!)

Undirected u



Terminology for Directed Graphs

Definition 2.2 (Successors and Predecessors)

For a directed edge $(u, v) \in E$:

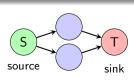
- \bullet v is a **successor** (Nachfolger) of u
- *u* is a **predecessor** (Vorgänger) of *v*

Definition 2.3 (In-Degree and Out-Degree)

For a vertex $u \in V$:

- $\deg_{in}(u) := |\{v \mid (v, u) \in E\}|$ is the **in-degree** (Eingangsgrad)
- $\deg_{\mathrm{out}}(u) := |\{v \mid (u, v) \in E\}|$ is the **out-degree** (Ausgangsgrad)

- A source is a vertex with $deg_{in}(u) = 0$
- A **sink** is a vertex with $deg_{out}(u) = 0$



Paths and Cycles in Directed Graphs

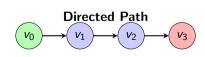
Definition 2.4 (Directed Path)

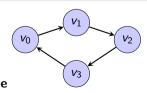
A **directed path** from v_0 to v_k is a sequence of vertices (v_0, v_1, \dots, v_k) where $(v_i, v_{i+1}) \in E$ for all $0 \le i < k$.

Definition 2.5 (Directed Cycle)

A directed cycle is a directed path where:

- $k \ge 1$ (no self-loops)
- $v_0 = v_k$ (starts and ends at same vertex)
- All other vertices are distinct.

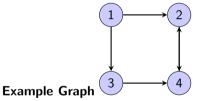




Directed Cycle

Representing Directed Graphs

Both adjacency matrix and adjacency list work for directed graphs!



Adjacency Matrix A

$$A[u][v] = \begin{cases} 1 & \text{if } (u, v) \in E \\ 0 & \text{otherwise} \end{cases}$$

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Adjacency List

1: [2, 3]

2: [4]

3: [4]

4: [2]

Note: Matrix is generally not symmetric for directed graphs!

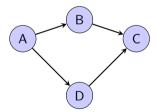
Topological Sorting: The Problem

Definition 2.6 (Topological Sorting)

A **topological ordering** of a directed graph G = (V, E) is a linear (total) ordering of vertices v_1, v_2, \ldots, v_n such that:

$$(v_i, v_j) \in E \implies i < j$$

In other words: all edges point "forward" in the ordering.



Valid: A, D, B, C Also valid: A, B, D, C

Applications:

- Task scheduling
- Build systems (Makefiles)
- Course prerequisites
- Compiler dependency resolution

When Does a Topological Ordering Exist?

Theorem 2.7

A directed graph G has a topological ordering **if and only if** G is acyclic (has no directed cycles).

Intuition for " \Leftarrow " (acyclic \Longrightarrow topological ordering exists):

- If there are no cycles, we can find a **sink** (vertex with no outgoing edges)
- Place the sink at the end of the ordering
- Remove it and repeat recursively
- This always works because each step maintains acyclicity

Question: Why must an acyclic graph have a sink?

Algorithm 1: Recursive Sink-Finding

function TopSort(G = (V, E))
 if V = ∅ then
 return empty list
 end if
 Find a sink v in G
 Let G' = (V \ {v}, E') where E' = E \ {(u, v) | u ∈ V}
 L ← TopSort(G')
 return L with v appended at the end
 end function

Correctness:

- Each recursive call places a sink at the end
- All edges from other vertices point to sinks we've already placed
- By induction, produces a valid topological ordering

Runtime: $O(|V|^2)$ if finding a sink takes O(|V|) time each call.

Can we do better?

fini-Quiz Assignment Directed Graphs **Topological Sorting** Depth-First Search (DFS) Peer Gradin

 $\triangleright \deg_{\text{out}}(v) = 0$

Your Turn: No Backward Paths in Topological Orderings

Claim: Let G = (V, E) be a DAG with topological ordering v_1, v_2, \ldots, v_n . If i < j, then there is **no** directed path from v_i to v_i .

In other words: you cannot go "backward" in a topological ordering by following edges.

Prove this claim:

Strategy: Use proof by contradiction and assume i < j but there exists a directed path

$$v_j \rightarrow v_{k_1} \rightarrow v_{k_2} \rightarrow \cdots \rightarrow v_{k_m} \rightarrow v_i$$

Time: 3-4 minutes

Solution: Edges in Topological Orderings

Proof.

We prove this by contradiction.

Suppose there exists an edge $(v_i, v_j) \in E$ and a directed path P from v_j to v_i .

From the topological ordering:

• Since $(v_i, v_j) \in E$, we have i < j (by definition of topological ordering)

From the path:

- Let $P: v_i \rightarrow v_{k_1} \rightarrow v_{k_2} \rightarrow \cdots \rightarrow v_{k_m} \rightarrow v_i$
- By the topological ordering property, each edge goes "forward":
 - $(v_j, v_{k_1}) \in E \implies j < k_1$
 - $\bullet \ (v_{k_1}, v_{k_2}) \in E \implies k_1 < k_2$
 - •
 - $(v_{k_m}, v_i) \in E \implies k_m < i$
- By transitivity: $j < k_1 < k_2 < \cdots < k_m < i$, so j < i

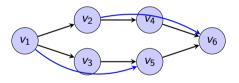
But we have both i < j and j < i, a contradiction. No such path can exist.

Understanding DAG Structure

What does this tell us?

Key Insight

In a topologically sorted DAG, all edges point "forward" in the ordering, and there are **no paths that go backward**.



Blue edges "skip ahead" but still go forward

Consequences:

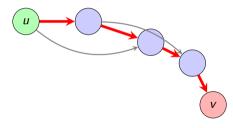
- Can process vertices left-to-right
- When processing v_i, all vertices that v_i depends on have been processed
- Enables efficient algorithms (e.g., shortest paths in O(|V| + |E|))

Application: This structure is why we can compute shortest and even longest paths in DAGs in **linear time**—we just process vertices in topological order!

A Better Approach: Using Depth-First Search

Key insight: Instead of repeatedly finding sinks, we can use DFS!

Observation: When we start at a vertex u and follow a path as far as possible (without repeating vertices), where do we end up?



Path from u to v

Claim: If we follow an unmarked path as far as possible, we must end at a vertex v where:

- All successors of v have been visited, OR
- v has no successors (is a sink)

If the graph is acyclic, v must be a sink!

This gives us an efficient way to find vertices to place at the end of our ordering!

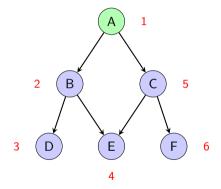
Depth-First Search (DFS)

Depth-First Search: The Idea

Strategy: Explore as deeply as possible before backtracking

Algorithm sketch:

- Start at a vertex u
- Mark u as visited
- For each unmarked successor v:
 - Recursively visit v
- When no unmarked successors remain, backtrack



Visit order: A, B, D, E, C, F

Key property: DFS explores one branch completely before moving to the next!

DFS: Formal Algorithm

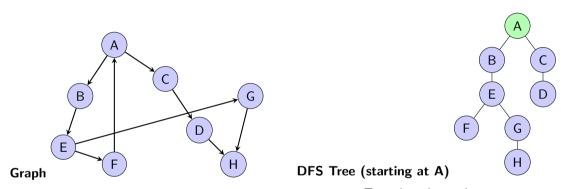
```
1: function DFS(G = (V, E))
1: function Visit(u)
                                                          Mark all vertices as unmarked
2:
      mark 11
                                                    2.
      for each successor v of u do
                                                          for each u \in V do
3.
                                                             if u is unmarked then
         if v is unmarked then
4:
                                                   4.
             Visit(v)
                                                                 Visit(u)
5:
                                                    5:
         end if
                                                             end if
6:
                                                   6.
7:
      end for
                                                          end for
  end function
                                                    8: end function
```

Why the outer loop in DFS?

- The graph might be disconnected
- Starting from one vertex might not reach all vertices
- We need to ensure we visit every vertex

Result: Creates a DFS forest (collection of DFS trees)

DFS: Visual Example



Tree edges shown above

Observation: The recursion naturally creates a tree structure!

DFS Runtime Analysis

Theorem 2.8

DFS runs in O(|V| + |E|) time when using an adjacency list representation.

Proof Idea.

Work done per vertex:

- Each vertex u is marked exactly once
- \bullet When visiting u, we iterate through all its successors
- Time for visiting u: $O(1 + \deg_{out}(u))$

Total time:

$$egin{aligned} \sum_{u \in V} O(1 + \mathsf{deg}_\mathsf{out}(u)) &= O\left(\sum_{u \in V} 1 + \sum_{u \in V} \mathsf{deg}_\mathsf{out}(u)
ight) \ &= O(|V| + |E|) \end{aligned}$$

iret Search (DES) Book Cr

DFS with Timestamps

Enhancement: Record when we enter and exit each vertex

```
1: function Visit(u)
        pre[u] \leftarrow T; T \leftarrow T + 1
        mark u
 3.
        for each successor v of u do
 4.
            if v is unmarked then
 5.
 6:
                Visit(v)
 7:
            end if
        end for
 8.
        post[u] \leftarrow T: T \leftarrow T + 1
10. end function
 1: function DFS(G)
       T \leftarrow 1
        (mark all unmarked, loop over vertices)
 4. end function
```

Timestamps:

- pre[u]: when we first visit u
- post[u]: when we finish exploring from u

Interval notation:

$$I_u = [\mathsf{pre}[u], \mathsf{post}[u]]$$

These intervals reveal important structural properties!

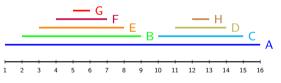
DFS Timestamp Example



Pre/Post orders:

Pre-order: A, B, E, F, G, C, D, H **Post-order:** G, F, E, B, H, D, C, A

Interval representation:



Nesting property: Intervals either nest (one contains the other) or are disjoint!

DFS and Topological Sorting

Theorem 2.9

If G is acyclic (a DAG), then the **reverse post-order** from DFS gives a topological ordering.

Why does this work?

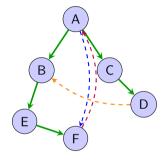
- When we finish exploring from vertex u, all vertices reachable from u have already been finished
- So post[u] comes after all descendants of u
- If $(u, v) \in E$, then v is explored before we finish u, so post[v] < post[u]
- Reversing post-order puts *u* before *v*, as required!
- 1: function Topological Sort(G)
- 2: Run DFS on G, computing post-order numbers
- 3: **return** vertices in reverse post-order
- 4: end function

Runtime: O(|V| + |E|)

Edge Classification in DFS

For edge (u, v):

- Tree edge: v is unmarked when explored from u
 - Forms the DFS tree/forest
- Back edge: $I_u \subseteq I_v$
 - Points to an ancestor
- Forward edge: $I_v \subseteq I_u$
 - Points to a descendant (not via tree edges)
- Cross edge: $I_{\mu} \cap I_{\nu} = \emptyset$
 - Connects different branches



— Tree, - - Back, - - Forward, - - Cross

DFS for Cycle Detection: A directed graph has a cycle \iff DFS finds a back edge!

Cycle Detection Using DFS

Theorem 2.10

A directed graph G contains a cycle if and only if DFS discovers a back edge.

Proof Sketch.

 (\Rightarrow) : Suppose G has a cycle $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k \rightarrow v_1$.

- Let v_i be the first vertex in the cycle visited by DFS
- When exploring from v_i , we must eventually reach v_{i-1} (the predecessor in the cycle)
- But v_i is still "active" (not finished), so $I_{v_{i-1}} \subseteq I_{v_i}$
- Therefore (v_{i-1}, v_i) is a back edge

(⇐): Suppose DFS finds back edge (u, v) where $I_u \subseteq I_v$.

- v is an ancestor of u in the DFS tree
- There's a tree path from v to u
- Adding edge (u, v) creates a cycle

] J

Your Turn: DFS Interval Property

Claim: In any DFS of a directed graph G, for any two vertices u and v, exactly one of the following holds:

- $I_u \cap I_v = \emptyset$ (intervals are disjoint), OR
- ② $I_u \subseteq I_v$ (interval of u is contained in interval of v), OR
- $lackbox{0} I_v \subseteq I_u$ (interval of v is contained in interval of u)

where $I_u = [pre[u], post[u]]$ and $I_v = [pre[v], post[v]]$.

Prove this claim:

Hints:

- Without loss of generality, assume pre[u] < pre[v] (i.e., we visit u first)
- There are two cases to consider: Is v visited before we finish exploring from u?

Time: 4-5 minutes

Solution: DFS Interval Property

Claim: For any two vertices u and v, exactly one of the following holds: $I_u \cap I_v = \emptyset$, OR $I_u \subseteq I_v$, OR $I_v \subseteq I_u$

Proof.

Without loss of generality, assume pre[u] < pre[v] (we visit u first).

Case 1: pre[v] < post[u] (we visit v before finishing u)

- ullet This means v was discovered during the exploration from u
- \bullet We must finish exploring from v before we can finish u
- Therefore: pre[u] < pre[v] < post[v] < post[u]
- Thus $I_v \subseteq I_u$

Case 2: pre[v] > post[u] (we visit v after finishing u)

- The intervals don't overlap at all
- Thus $I_{\mu} \cap I_{\nu} = \emptyset$

These are the only two possibilities, and they're mutually exclusive.

DFS - Your Friend and Helper

You are given an undirected graph as an adjacency list. Implement:

- hasCycle(n, E): Detect if the graph contains a cycle
- isReachable(E, u, v): Check if there's a path from u to v
- OcuntComponents (E): Count the number of connected components

Setup:

- Download the template from my website
- Copy Main.java to CodeExpert's "Welcome" exercise
- Copy custom.in and custom.out to corresponding files in "Welcome" exercise (in the public/directory)

Questions?

Peer Grading

Peer-Grading Exercise

This week's peer-grading exercise is **Exercise 8.3d-f** Please follow the usual process:

- Grade the assigned group's submission.
- Give constructive feedback and upload your feedback to Moodle by 23.59 tonight, at the latest.
- Contact me if you don't receive a submission to grade.