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Q1

Quiz

Let G = (V, E) be connected and assume all vertices of G have even degree. Recall the
algorithm Euler_Walk from the lecture:

Euler_Walk(u):
if there exists an edge {w, v} which is not marked:
mark the edge {u, v}
Euler. Walk(v)

Suppose we start the recursion with a call to Euler_Walk(ug) for some vertex ug € V.

True False

We have an even number of marked edges which contain g ©
immediately after the start of any call to Euler_Walk (uq) .

Letw' € V with ' # ug, then we have an even number of [©)

marked edges which contain u’ immediately after the start of
any call to Euler_Walk(u') .

Scoring method: Subpoints @



Q1

For the initial vertex uy, since we start the recursion there, there must be either 0 edges marked

(first ever call) or there is an ingoing edge for every outgoing edge, so an even number of marked
edges.

For every other vertex u’ # g, we have an odd number of edges marked because the first call to
u must have one edge marked already, then the same reasoning as for uy means everytime we

call Euler_Walk(u') we have +2 edges marked.

We have an even number of marked edges which contain ug immediately after the start of
any call to Euler_Walk(up) -

: True

Letw’ € V with u' # ug, then we have an even number of marked edges which contain u’
immediately after the start of any call to Euler_Walk(u')

: False



Suppose that G = (V, E) has an Eulerian Walk. Then we can always find an Eulerian Walk of G
in time O(|V']).

True

False ©

If we have graphs with 174

E| =9

")) then we can't even output all edges in the graph, much
less an Eulerian Walk.

The correct answer is 'False'.
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Mini-Quiz

What adjacency matrix describes the graph above? The indices are in increasing numerical order.

S-S SorrP Sor o
cococo mooo mrooo
Hooco cocor oo o R
cocor moorR oo oK




0 0

The correct answer is:

(o=}
o O O =
o O O =



Suppose we restrict our inputs to graphs G = (V, E) which are connected and satisfy

|E| > |V|?/10, rather than the class of all graphs. Then, depth-first search (DFS) runs (in the
worst case over such graphs) asymptotically in the same time regardless of whether the graph is
stored as adjacency lists or as an adjacency matrix.

True @

False

With adjacency lists we have a runtime of O(|V| + | E|) and an adjacency matrix its O(|V|?) but
plugging in V|2 > |E| > |V|?/10, we can see that these have the same asymptotic runtime.

The correct answer is 'True'.



Let G be a directed graph that contains a (directed) cycle. Which of the following statements are
true for all such G?

True False
G has no source vertex. ©
G has no sink vertex.

G does not have a topological sorting of its vertices.



Q5

In lecture, we saw that a directed graph with a cycle cannot admit a toplogical sorting. However, if
we can have vertices not part of the cycle which act as sources or sinks, for example, consider a
directed graph plus an isolated vertex.

G has no source vertex.
: False

G has no sink vertex.

: False

G does not have a topological sorting of its vertices.
: True




AN

Which vertex is at the end of every topological sorting of the graph above?

Mini-Quiz
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In every topological sorting of the graph above, vertex 1 must come before vertex 4.

True

False @

Mini-Quiz



We run depth-first-search (DFS) on a directed graph G = (V, E) which contains a directed
cycle. We determine all the pre/post numbers.
What can we conclude about the relationship of pre/post numbers?

True False

For every edge (u,v) € E, we have [©] In lecture, we

pre(v) < pre(u) < post(u) < post(v). saw these are
only back
edges. Not all
edges can be
back edges,
since tree
edges are not
back edges.

There exists some edge (u,v) € E whichhas @ With a directed

pre(v) < pre(u) < post(u) < post(v). cycle, we must
have a back
edge, which is
exactly this
condition.

Enter Caption



We run depth-first-search (DFS) on a directed graph G = (V, E) and we determine all
the pre/post numbers. Then for an edge (u, v) € E, it's possible that
pre(u) < pre(v) < post(u) < post(v).

True

False @

We saw in lecture this is impossible. It's impossible because if we recurse on w first, then v before
returning to u, then we must go back to v first before u.

The correct answer is 'False".



Q10

In the graph above, the green, solid edges indicate a depth-first search tree. Classify the
remaining edges. (Hint: each option should be used exactly once).

(5,4) CrossEdge v |©
(8,1) BackEdge v @

(1,3)  ForwardEdge v @

Mini-Quiz
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Feedback Assignments 6 & 7

Common points from the last two assignments:

@ DP Solution Structure: Once you have the correct subproblem and recursion, you can
solve the theory DP exercises very mechanically and minimally. The important aspect is
that you formalize your subproblem (meaning of the DP-entry), the recurrence and the
computation order properly and provide a justification for the correctness. Have a look at
the Master Solution for the expected structure.

o Precision: It is important that you are precise. This includes specifying variables
whenever you use them (once you use a variable, e.g., i, for the first time (e.g.,
DP[i] = ..., a specification needs to follow (e.g.: "for i € N with 1 </ < n or at least
1 < i < n - sufficient when talking about indeces).

o Justification: Your justification can be quite informal (no formal proof like an
induction required) but should explain why your recurrence computes the correct result
using the meaning of the entries.

Remember to check the detailed feedback on Moodle! Reach out if you have any questions
regarding the corrections.



Q3

a) If a vertex v is part of a cycle, then it is not a cut vertex.

Rerove V e o,
. _ N
5

Connberexample

[N csc((

b) If a vertex v is not a cut vertex, then v must be part of a cycle.
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c) If an edge e is part of a cycle (i.e. e connects two consecutive vertices in a cycle), then it is not a cut

edge.
c. € G=(UE) wek L={u(u3 €E {e putod a cycle. &‘v/?o.s& Jor seke of onfrad chon thet e
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e) If uw and v are two adjacent cut vertices, then the edge e = {u, v} is a cut edge.

Counterexample : /\ Notice €hat L& o ave cut
. e " . utrcas $nt e ¢ Fq\‘( oF a
W v 9cle => ¢ (¢ Nta q—r&—«o&c.

f) If e = {u, v} is a cut edge, then u and v are cut vertices. What if we add the condition that u and v
have degree at least 2 ?
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Exercise 8.4  Introduction to Trees.

In this exercise the goal is to prove a few basic properties of trees (for the definition of a tree, see

Definition/1).

(a) Aleaf is a vertex with degree 1. Prove that in every tree G with at least two vertices there exists a
leaf.

(@) le¢ G=CUE) (e a €ree arek p= Qg Uy V), el §e @ A:adws FQ{L /n G,
Considdes U, enok S ppose tat "(‘chu“)> [. Thet Must Thed exisé nodlar nc@‘\dﬂf‘
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(b) Prove that every tree with n vertices has exactly n — 1 edges.

Hint: Prove the statement by using induction on n. In the induction step, use part (a) to find a leaf.
Disconnect the leaf from the tree and argue that the remaining subgraph is also a tree. Apply the
induction hypothesis and conclude.

e Proceao( $7 induction on N,
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(a) A domino set consists of all possible (g) + 6 = 21 different tiles of the form [z|y], where z and y
are numbers from {1,2,3,4,5,6}. The tiles are symmetric, so [z|y] and [y|z] is the same tile and
appears only once.

Show that it is impossible to form a line of all 21 tiles such that the adjacent numbers of any
consecutive tiles coincide like in the example below.

(b) What happens if we replace 6 by an arbitrary n > 2? For which n is it possible to line up all (g) +n
different tiles along a line?
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Motivation: Task Scheduling with Dependencies

Real-world problem: Getting dressed in the morning!
Dependencies:
@ Socks — Shoes

@ Underwear — Pants — Belt

@ Shirt — Jacket | Underwear |——>] Pants
Valid order:

Underwear, Shirt, Socks, Pants, Belt, Shoes, Jacket

Question: Can we always find a valid ordering? What if there are circular dependencies?

Directed Graphs



When Ordering is Impossible

Circular dependencies create problems!

Problem:
@ Each node has a predecessor

@ No valid starting point!

G ° @ Cannot produce a linear ordering

Directed cycle: A—- B — C— A

Key Theorem (Preview)

A directed graph has a topological ordering if and only if it contains no directed cycles.

Directed Graphs



Definition: Directed Graphs

Definition 2.1 (Directed Graph)

A directed graph (or digraph) G = (V, E) consists of:

e V: a finite set of vertices

@ £ C V x V: aset of ordered pairs called directed edges
We write (u, v) € E for a directed edge from u to v.

Important difference from undirected graphs:
e Undirected: {u,v} = {v,u} (order doesn't matter)
o Directed: (u,v) # (v, u) (order matters!)

Undirected C C Directed ( ) @

Directed Graphs



Terminology for Directed Graphs

Definition 2.2 (Successors and Predecessors)
For a directed edge (u,v) € E:
@ v is a successor (Nachfolger) of u

@ u is a predecessor (Vorgénger) of v

Definition 2.3 (In-Degree and Out-Degree)
For a vertex u € V:
o deg;,(u) :=|{v | (v, u) € E}| is the in-degree (Eingangsgrad)

o deg,(u) :=[{v | (u,v) € E}| is the out-degree (Ausgangsgrad)

o A source is a vertex with deg; (v) =0 GKO\‘@

@ A sink is a vertex with deg,,(u) =0 source “ink

4

Directed Graphs



Paths and Cycles in Directed Graphs

Definition 2.4 (Directed Path)

A directed path from vy to v is a sequence of vertices (vp, v1,. .., vk) Where (vj, vit1) € E for

all0 < i < k. )

Definition 2.5 (Directed Cycle)
A directed cycle is a directed path where:
@ k> 1 (no self-loops)
@ v = v (starts and ends at same vertex)

@ All other vertices are distinct

Directed Path @ @ e
Directed Cycle e

Directed Graphs



Representing Directed Graphs

Both adjacency matrix and adjacency list work for directed graphs!

Adjacency Matrix A
1 if(u,v)€E
Alullv] = { (v )

0 otherwise

A=

[=Nele)

0
1
1
0

o
[ =
coor

Adj List
Example Graph e o l.Jacei;C)g] °
[4]
[4]
[2]

[ Note: Matrix is generally not symmetric for directed graphs! ]

Directed Graphs
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Topological Sorting: The Problem

Definition 2.6 (Topological Sorting)

A topological ordering of a directed graph G = (V, E) is a linear (total) ordering of vertices
Vi, V2, ..., Vy such that:
(vibvj)) e E = i<

In other words: all edges point " forward” in the ordering.

° e Applications:

@ Task scheduling

@ Build systems (Makefiles)

e @ Course prerequisites

@ Compiler dependency resolution
Valid: A, P P y

D, B, C
Also valid: A, B, D, C

Topological Sorting



When Does a Topological Ordering Exist?

A directed graph G has a topological ordering if and only if G is acyclic (has no directed
cycles).

Intuition for " <" (acyclic — topological ordering exists):

o If there are no cycles, we can find a sink (vertex with no outgoing edges)
@ Place the sink at the end of the ordering
@ Remove it and repeat recursively

@ This always works because each step maintains acyclicity

Question: Why must an acyclic graph have a sink?

Topological Sorting



Algorithm 1: Recursive Sink-Finding

1: function ToPSORT(G = (V, E))

2 if V =0 then

3 return empty list

4 end if

5: Find a sink v in G > degyt(v) =0
6 Let G’ = (V\{v},E’) where E' = E\ {(u,v) |ue V}

7 L + ToPSORT(G’)

8: return L with v appended at the end

9: end function

Correctness:
@ Each recursive call places a sink at the end
o All edges from other vertices point to sinks we've already placed

@ By induction, produces a valid topological ordering

Runtime: O(|V|?) if finding a sink takes O(|V/|) time each call.

Can we do better?

Topological Sorting



Your Turn: No Backward Paths in Topological Orderings

Claim: Let G = (V, E) be a DAG with topological ordering vy, va, ..., v,. If i <j, then there
is no directed path from v; to v;.

In other words: you cannot go "backward” in a topological ordering by following edges.
Prove this claim:

Strategy: Use proof by contradiction and assume i < j but there exists a directed path
Vi = Vg = Vi —> = —> Vi, — Vi

Time: 3-4 minutes

Topological Sorting



Solution: Edges in Topological Orderings

We prove this by contradiction.
Suppose there exists an edge (v;, vj) € E and a directed path P from v; to v;.

From the topological ordering:
@ Since (v;,vj) € E, we have i < j (by definition of topological ordering)

From the path:

@ Let P:vi— vy = Vi, — -+ = Wy, =V

@ By the topological ordering property, each edge goes "forward”:
° (vj,vkl)EE = j <k
° (V/q"/kz) €EE = k<k
°:
° (vkm,v,-) €cE — kn<i

@ By transitivity: j < ki < ko < --- < kpyy < i, 50 j < i

But we have both / < j and j < i, a contradiction. No such path can exist. O

Topological Sorting



Understanding DAG Structure

What does this tell us?

In a topologically sorted DAG, all edges point "forward” in the ordering, and there are no
paths that go backward.

Consequences:

Ot
W\ @ Can process vertices left-to-right
@ @ @ When processing v;, all vertices that v;
@ e depends on have been processed

o Enables efficient algorithms (e.g.,
Blue edges "skip ahead” but still go forward shortest paths in O(|V| + |E|))

Application: This structure is why we can compute shortest and even longest paths in
DAGs in linear time—we just process vertices in topological order!

Topological Sorting



A Better Approach: Using Depth-First Search

Key insight: Instead of repeatedly finding sinks, we can use DFS!

Observation: When we start at a vertex u and follow a path as far as possible (without
repeating vertices), where do we end up?

Claim: If we follow an unmarked path as far as
possible, we must end at a vertex v where:

@ All successors of v have been visited, OR

@ v has no successors (is a sink)

If the graph is acyclic, v must be a sink!

Path from u to v

[ This gives us an efficient way to find vertices to place at the end of our ordering! ]

Topological Sorting
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Depth-First Search: The Idea

Strategy: Explore as deeply as possible before backtracking

Algorithm sketch:
© Start at a vertex u
@ Mark u as visited

© For each unmarked successor v:

o Recursively visit v

@ When no unmarked successors remain, 3
backtrack

Visit order: A, B, D, E, C, F

Key property: DFS explores one branch completely before moving to the next!

Depth-First Search (DFS)



DFS: Formal Algorithm

1: function VisiT(u) 1: function DFS(G = (V, E))

2 mark u 2 Mark all vertices as unmarked
3 for each successor v of u do 3 for each u € V do

4: if v is unmarked then 4: if uis unmarked then

5: VisiT(v) 5: Visir(u)

6 end if 6 end if

7 end for 7 end for

8: end function 8: end function

Why the outer loop in DFS?
@ The graph might be disconnected
@ Starting from one vertex might not reach all vertices

@ We need to ensure we visit every vertex

Result: Creates a DFS forest (collection of DFS trees)

Depth-First Search (DFS)



DFS: Visual Example

DFS Tree (starting at A) °

Tree edges shown above

Graph

Observation: The recursion naturally creates a tree structure!

Depth-First Search (DFS)



DFS Runtime Analysis

Theorem 2.8
DFS runs in O(|V| + |E|) time when using an adjacency list representation.

Proof Idea.

Work done per vertex:

@ Each vertex u is marked exactly once
@ When visiting u, we iterate through all its successors
@ Time for visiting u: O(1 + deg,,.(u))

Total time:

Z O(1 + deg,y (u (Z 1+ Z deg, (U )

ueV ueV ueV
= O(|VI+El)

v
Depth-First Search (DFS)




DFS with Timestamps

Enhancement: Record when we enter and exit each vertex

1: function VisIT(v)

2 prefu] < T3 T T +1 Timestamps:

3 mark u

4 for each successor v of u do o pre[u]: when we first visit u

5: if v is unmarked then @ post[u]: when we finish exploring
6 VisiT(v) from u

7 end if X

8 end for Interval notation:

9 postju] <~ T; T« T +1

10: end function ly = [pre[u], post[u]]

1. function DFS(G) These intervals reveal important structural
2 T —1 properties!

3: (mark all unmarked, loop over vertices)

4: end function

Depth-First Search (DFS)



DFS Timestamp Example
Graph

1/16

° Pre/Post orders:

Pre-order: A, B, E, F, G, C,D, H

e e Post-order: G, F, E, B, H, D, C, A
2/9 10/15

Interval representation:
— G

3/8

[ Nesting property: Intervals either nest (one contains the other) or are disjoint! ]

Depth-First Search (DFS)



DFS and Topological Sorting

Theorem 2.9
If G is acyclic (a DAG), then the reverse post-order from DFS gives a topological ordering.

Why does this work?

@ When we finish exploring from vertex u, all vertices reachable from u have already been
finished

@ So post[u] comes after all descendants of u
o If (u,v) € E, then v is explored before we finish u, so post[v] < post[u]
@ Reversing post-order puts u before v, as required!

1: function TOPOLOGICALSORT(G)

2 Run DFS on G, computing post-order numbers
3: return vertices in reverse post-order

4: end function

Runtime: O(|V|+ |E])



Edge Classification in DFS

For edge (u,v):
o Tree edge: v is unmarked when explored

from u
o Forms the DFS tree/forest

o Back edge: /, C |/,
o Points to an ancestor

o Forward edge: /, C |/,
o Points to a descendant (not via tree
edges)

— Tree, - - Back, - - Forward, - - Cross
o Cross edge: I,N /I, =0

o Connects different branches

[ DFS for Cycle Detection: A directed graph has a cycle <= DFS finds a back edge! ]

Depth-First Search (DFS)



Cycle Detection Using DFS
Theorem 2.10
A directed graph G contains a cycle if and only if DFS discovers a back edge.

Proof Sketch.

(=): Suppose G has a cycle vi = vo — -+ = v — vy.

@ Let v; be the first vertex in the cycle visited by DFS
@ When exploring from v;, we must eventually reach v;_; (the predecessor in the cycle)
@ But v; is still "active” (not finished), so /,,_, C I,

@ Therefore (v;_1,v;) is a back edge

(«<=): Suppose DFS finds back edge (u,v) where I, C I,.
@ v is an ancestor of u in the DFS tree
@ There's a tree path from v to u
e Adding edge (u, v) creates a cycle

O

V.
Depth-First Search (DFS)




Your Turn: DFS Interval Property

Claim: In any DFS of a directed graph G, for any two vertices u and v, exactly one of the
following holds:

Q@ /,N 1, =0 (intervals are disjoint), OR
@ /, C I, (interval of u is contained in interval of v), OR
@ /, C I, (interval of v is contained in interval of u)
where [, = [pre[u], post[u]] and [, = [pre[v], post[V]].
Prove this claim:
Hints:
e Without loss of generality, assume pre[u] < pre[v] (i.e., we visit u first)

@ There are two cases to consider: Is v visited before we finish exploring from u?

Time: 4-5 minutes

Depth-First Search (DFS)






Solution: DFS Interval Property

Claim: For any two vertices u and v, exactly one of the following holds: /, N/, =0, OR
l €l ORI, C 1y

Without loss of generality, assume pre[u] < pre[v] (we visit u first).
Case 1: pre[v] < post[u] (we visit v before finishing u)

@ This means v was discovered during the exploration from u

@ We must finish exploring from v before we can finish u

@ Therefore: pre[u] < pre[v] < post[v] < post[u]

@ Thus /, C I,
Case 2: pre[v] > post[u] (we visit v after finishing u)

@ The intervals don't overlap at all
@ Thus I,Nn/l, =0

These are the only two possibilities, and they're mutually exclusive. D)

Depth-First Search (DFS)




DFS - Your Friend and Helper

You are given an undirected graph as an adjacency list. Implement:
@ hasCycle(n, E): Detect if the graph contains a cycle
Q isReachable(E, u, v): Check if there's a path from u to v

© countComponents (E): Count the number of connected components

Setup:
@ Download the template from my website
@ Copy Main. java to CodeExpert’s "Welcome" exercise

o Copy custom.in and custom.out to corresponding files in "Welcome” exercise (in the
public/ directory)

Depth-First Search (DFS)
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Questions?
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Peer-Grading Exercise

This week's peer-grading exercise is Exercise 8.3d-f
Please follow the usual process:

o Grade the assigned group's submission.

@ Give constructive feedback and upload your feedback to Moodle by 23.59 tonight, at the
latest.

@ Contact me if you don't receive a submission to grade.

Peer Grading
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