Week 9: Topological Sort & DFS

Algorithms & Data Structures

Thorben Klabunde
th-kl.ch

November 17, 2025

www.th-kl.ch

e Mini-Quiz

© Assignment

© Directed Graphs

@ Topological Sorting

© Depth-First Search (DFS)

@ Peer Grading

Mini-Quiz

Assignment

Q3

a) If a vertex v is part of a cycle, then it is not a cut vertex.

b) If a vertex v is not a cut vertex, then v must be part of a cycle.

Q3

c) If an edge e is part of a cycle (i.e. e connects two consecutive vertices in a cycle), then it is not a cut
edge.

d) If an edge e is not a cut edge, then e must be part of a cycle.

e) If uw and v are two adjacent cut vertices, then the edge e = {u, v} is a cut edge.

f) If e = {u, v} is a cut edge, then u and v are cut vertices. What if we add the condition that u and v
have degree at least 2 ?

Exercise 8.4 Introduction to Trees.

In this exercise the goal is to prove a few basic properties of trees (for the definition of a tree, see

Definition/1).

(a) Aleaf is a vertex with degree 1. Prove that in every tree G with at least two vertices there exists a
leaf.

(b) Prove that every tree with n vertices has exactly n — 1 edges.

Hint: Prove the statement by using induction on n. In the induction step, use part (a) to find a leaf.

Disconnect the leaf from the tree and argue that the remaining subgraph is also a tree. Apply the
induction hypothesis and conclude.

(a) A domino set consists of all possible (g) + 6 = 21 different tiles of the form [z|y], where z and y
are numbers from {1,2,3,4,5,6}. The tiles are symmetric, so [z|y] and [y|z] is the same tile and
appears only once.

Show that it is impossible to form a line of all 21 tiles such that the adjacent numbers of any
consecutive tiles coincide like in the example below.

(b) What happens if we replace 6 by an arbitrary n > 2? For which n is it possible to line up all (g) +n
different tiles along a line?

Directed Graphs

Directed Graphs

Motivation: Task Scheduling with Dependencies

Real-world problem: Getting dressed in the morning!
Dependencies:
@ Socks — Shoes

@ Underwear — Pants — Belt

@ Shirt — Jacket | Underwear |——>] Pants
Valid order:

Underwear, Shirt, Socks, Pants, Belt, Shoes, Jacket

Question: Can we always find a valid ordering? What if there are circular dependencies?

Directed Graphs

When Ordering is Impossible

Circular dependencies create problems!

Problem:
@ Each node has a predecessor

@ No valid starting point!

G ° @ Cannot produce a linear ordering

Directed cycle: A—- B — C— A

Key Theorem (Preview)

A directed graph has a topological ordering if and only if it contains no directed cycles.

Directed Graphs

Definition: Directed Graphs

Definition 2.1 (Directed Graph)

A directed graph (or digraph) G = (V, E) consists of:

e V: a finite set of vertices

@ £ C V x V: aset of ordered pairs called directed edges
We write (u, v) € E for a directed edge from u to v.

Important difference from undirected graphs:
e Undirected: {u,v} = {v,u} (order doesn't matter)
o Directed: (u,v) # (v, u) (order matters!)

Undirected C C Directed () @

Directed Graphs

Terminology for Directed Graphs

Definition 2.2 (Successors and Predecessors)
For a directed edge (u,v) € E:
@ v is a successor (Nachfolger) of u

@ u is a predecessor (Vorgénger) of v

Definition 2.3 (In-Degree and Out-Degree)
For a vertex u € V:
o deg;,(u) :=|{v | (v, u) € E}| is the in-degree (Eingangsgrad)

o deg,(u) :=[{v | (u,v) € E}| is the out-degree (Ausgangsgrad)

o A source is a vertex with deg; (v) =0 GKO\‘@

@ A sink is a vertex with deg,,(u) =0 source “ink

4

Directed Graphs

Paths and Cycles in Directed Graphs

Definition 2.4 (Directed Path)

A directed path from vy to v is a sequence of vertices (vp, v1,. .., vk) Where (vj, vit1) € E for

all0 < i < k.)

Definition 2.5 (Directed Cycle)
A directed cycle is a directed path where:
@ k> 1 (no self-loops)
@ v = v (starts and ends at same vertex)

@ All other vertices are distinct

Directed Path @ @ e
Directed Cycle e

Directed Graphs

Representing Directed Graphs

Both adjacency matrix and adjacency list work for directed graphs!

Adjacency Matrix A
1 if(u,v)€E
Alullv] = { (v)

0 otherwise

A=

[=Nele)

0
1
1
0

o
[=
coor

Adj List
Example Graph e o l.Jacei;C)g] °
[4]
[4]
[2]

[Note: Matrix is generally not symmetric for directed graphs!]

Directed Graphs

Topological Sorting

Topological Sorting

Topological Sorting: The Problem

Definition 2.6 (Topological Sorting)

A topological ordering of a directed graph G = (V, E) is a linear (total) ordering of vertices
Vi, V2, ..., Vy such that:
(vibvj)) e E = i<

In other words: all edges point " forward” in the ordering.

° e Applications:

@ Task scheduling

@ Build systems (Makefiles)

e @ Course prerequisites

@ Compiler dependency resolution
Valid: A, P P y

D, B, C
Also valid: A, B, D, C

Topological Sorting

When Does a Topological Ordering Exist?

A directed graph G has a topological ordering if and only if G is acyclic (has no directed
cycles).

Intuition for " <" (acyclic — topological ordering exists):

o If there are no cycles, we can find a sink (vertex with no outgoing edges)
@ Place the sink at the end of the ordering
@ Remove it and repeat recursively

@ This always works because each step maintains acyclicity

Question: Why must an acyclic graph have a sink?

Topological Sorting

Algorithm 1: Recursive Sink-Finding

1: function ToPSORT(G = (V, E))

2 if V =0 then

3 return empty list

4 end if

5: Find a sink v in G > degyt(v) =0
6 Let G’ = (V\{v},E’) where E' = E\ {(u,v) |ue V}

7 L + ToPSORT(G’)

8: return L with v appended at the end

9: end function

Correctness:
@ Each recursive call places a sink at the end
o All edges from other vertices point to sinks we've already placed

@ By induction, produces a valid topological ordering

Runtime: O(|V|?) if finding a sink takes O(|V/|) time each call.

Can we do better?

Topological Sorting

Your Turn: No Backward Paths in Topological Orderings

Claim: Let G = (V, E) be a DAG with topological ordering vy, va, ..., v,. If i <j, then there
is no directed path from v; to v;.

In other words: you cannot go "backward” in a topological ordering by following edges.
Prove this claim:

Strategy: Use proof by contradiction and assume i < j but there exists a directed path
Vi = Vg = Vi —> = —> Vi, — Vi

Time: 3-4 minutes

Topological Sorting

Topological Sorting

Understanding DAG Structure

What does this tell us?

In a topologically sorted DAG, all edges point "forward” in the ordering, and there are no
paths that go backward.

Consequences:

Ot
W\ @ Can process vertices left-to-right
@ @ @ When processing v;, all vertices that v;
@ e depends on have been processed

o Enables efficient algorithms (e.g.,
Blue edges "skip ahead” but still go forward shortest paths in O(|V| + |E|))

Application: This structure is why we can compute shortest and even longest paths in
DAGs in linear time—we just process vertices in topological order!

Topological Sorting

A Better Approach: Using Depth-First Search

Key insight: Instead of repeatedly finding sinks, we can use DFS!

Observation: When we start at a vertex u and follow a path as far as possible (without
repeating vertices), where do we end up?

Claim: If we follow an unmarked path as far as
possible, we must end at a vertex v where:

@ All successors of v have been visited, OR

@ v has no successors (is a sink)

If the graph is acyclic, v must be a sink!

Path from u to v

[This gives us an efficient way to find vertices to place at the end of our ordering!]

Topological Sorting

Depth-First Search (DFS)

Depth-First Search (DFS)

Depth-First Search: The Idea

Strategy: Explore as deeply as possible before backtracking

Algorithm sketch:
© Start at a vertex u
@ Mark u as visited

© For each unmarked successor v:

o Recursively visit v

@ When no unmarked successors remain, 3
backtrack

Visit order: A, B, D, E, C, F

Key property: DFS explores one branch completely before moving to the next!

Depth-First Search (DFS)

DFS: Formal Algorithm

1: function VisiT(u) 1: function DFS(G = (V, E))

2 mark u 2 Mark all vertices as unmarked
3 for each successor v of u do 3 for each u € V do

4: if v is unmarked then 4: if uis unmarked then

5: VisiT(v) 5: Visir(u)

6 end if 6 end if

7 end for 7 end for

8: end function 8: end function

Why the outer loop in DFS?
@ The graph might be disconnected
@ Starting from one vertex might not reach all vertices

@ We need to ensure we visit every vertex

Result: Creates a DFS forest (collection of DFS trees)

Depth-First Search (DFS)

DFS: Visual Example

DFS Tree (starting at A) °

Tree edges shown above

Graph

Observation: The recursion naturally creates a tree structure!

Depth-First Search (DFS)

DFS Runtime Analysis

Theorem 2.8
DFS runs in O(|V| + |E|) time when using an adjacency list representation.

Proof Idea.

Work done per vertex:

@ Each vertex u is marked exactly once
@ When visiting u, we iterate through all its successors
@ Time for visiting u: O(1 + deg,,.(u))

Total time:

Z O(1 + deg,y (u (Z 1+ Z deg, (U)

ueV ueV ueV
= O(|VI+El)

v
Depth-First Search (DFS)

DFS with Timestamps

Enhancement: Record when we enter and exit each vertex

1: function VisIT(v)

2 prefu] < T3 T T +1 Timestamps:

3 mark u

4 for each successor v of u do o pre[u]: when we first visit u

5: if v is unmarked then @ post[u]: when we finish exploring
6 VisiT(v) from u

7 end if X

8 end for Interval notation:

9 postju] <~ T; T« T +1

10: end function ly = [pre[u], post[u]]

1. function DFS(G) These intervals reveal important structural
2 T —1 properties!

3: (mark all unmarked, loop over vertices)

4: end function

Depth-First Search (DFS)

DFS Timestamp Example
Graph

1/16

° Pre/Post orders:

Pre-order: A, B, E, F, G, C,D, H

e e Post-order: G, F, E, B, H, D, C, A
2/9 10/15

Interval representation:
— G

3/8

[Nesting property: Intervals either nest (one contains the other) or are disjoint!]

Depth-First Search (DFS)

DFS and Topological Sorting

Theorem 2.9
If G is acyclic (a DAG), then the reverse post-order from DFS gives a topological ordering.

Why does this work?

@ When we finish exploring from vertex u, all vertices reachable from u have already been
finished

@ So post[u] comes after all descendants of u
o If (u,v) € E, then v is explored before we finish u, so post[v] < post[u]
@ Reversing post-order puts u before v, as required!

1: function TOPOLOGICALSORT(G)

2 Run DFS on G, computing post-order numbers
3: return vertices in reverse post-order

4: end function

Runtime: O(|V|+ |E])

Edge Classification in DFS

For edge (u,v):
o Tree edge: v is unmarked when explored

from u
o Forms the DFS tree/forest

o Back edge: /, C |/,
o Points to an ancestor

o Forward edge: /, C |/,
o Points to a descendant (not via tree
edges)

— Tree, - - Back, - - Forward, - - Cross
o Cross edge: I,N /I, =0

o Connects different branches

[DFS for Cycle Detection: A directed graph has a cycle <= DFS finds a back edge!]

Depth-First Search (DFS)

Cycle Detection Using DFS
Theorem 2.10
A directed graph G contains a cycle if and only if DFS discovers a back edge.

Proof Sketch.

(=): Suppose G has a cycle vi = vo — -+ = v — vy.

@ Let v; be the first vertex in the cycle visited by DFS
@ When exploring from v;, we must eventually reach v;_; (the predecessor in the cycle)
@ But v; is still "active” (not finished), so /,,_, C I,

@ Therefore (v;_1,v;) is a back edge

(«<=): Suppose DFS finds back edge (u,v) where I, C I,.
@ v is an ancestor of u in the DFS tree
@ There's a tree path from v to u
e Adding edge (u, v) creates a cycle

O

V.
Depth-First Search (DFS)

Your Turn: DFS Interval Property

Claim: In any DFS of a directed graph G, for any two vertices u and v, exactly one of the
following holds:

Q@ /,N 1, =0 (intervals are disjoint), OR
@ /, C I, (interval of u is contained in interval of v), OR
@ /, C I, (interval of v is contained in interval of u)
where [, = [pre[u], post[u]] and [, = [pre[v], post[V]].
Prove this claim:
Hints:
e Without loss of generality, assume pre[u] < pre[v] (i.e., we visit u first)

@ There are two cases to consider: Is v visited before we finish exploring from u?

Time: 4-5 minutes

Depth-First Search (DFS)

DFS - Your Friend and Helper

You are given an undirected graph as an adjacency list. Implement:
@ hasCycle(n, E): Detect if the graph contains a cycle
Q isReachable(E, u, v): Check if there's a path from u to v

© countComponents (E): Count the number of connected components

Setup:
@ Download the template from my website
@ Copy Main. java to CodeExpert’s "Welcome" exercise

o Copy custom.in and custom.out to corresponding files in "Welcome” exercise (in the
public/ directory)

Depth-First Search (DFS)

www.th-kl.ch

Questions?

Depth-First Search (DFS)

Peer Grading

Peer Grading

Peer-Grading Exercise

This week's peer-grading exercise is Exercise 8.3d-f
Please follow the usual process:

o Grade the assigned group's submission.

@ Give constructive feedback and upload your feedback to Moodle by 23.59 tonight, at the
latest.

@ Contact me if you don't receive a submission to grade.

Peer Grading

	Mini-Quiz
	Assignment
	Directed Graphs
	Topological Sorting
	Depth-First Search (DFS)
	Peer Grading

