Week 9: Topological Sort & DFS Algorithms & Data Structures

Thorben Klabunde

th-kl.ch

November 17, 2025

Agenda

- Mini-Quiz
- 2 Assignment
- Oirected Graphs
- Topological Sorting
- Depth-First Search (DFS)
- 6 Peer Grading

Mini-Quiz

a) If a vertex v is part of a cycle, then it is not a cut vertex.

b) If a vertex v is not a cut vertex, then v must be part of a cycle.

c) If an edge e is part of a cycle (i.e. e connects two consecutive vertices in a cycle), then it is not a cut edge.

d) If an edge e is not a cut edge, then e must be part of a cycle.

e) If u and v are two adjacent cut vertices, then the edge $e = \{u, v\}$ is a cut edge.

f) If $e=\{u,v\}$ is a cut edge, then u and v are cut vertices. What if we add the condition that u and v have degree at least 2?

Exercise 8.4 Introduction to Trees.

In this exercise the goal is to prove a few basic properties of trees (for the definition of a tree, see Definition 1).

(a) A \mathbf{leaf} is a vertex with degree 1. Prove that in every tree G with at least two vertices there exists a leaf.

(b) Prove that every tree with n vertices has exactly n-1 edges.

Hint: Prove the statement by using induction on n. In the induction step, use part (a) to find a leaf. Disconnect the leaf from the tree and argue that the remaining subgraph is also a tree. Apply the induction hypothesis and conclude.

(a) A domino set consists of all possible $\binom{6}{2}+6=21$ different tiles of the form [x|y], where x and y are numbers from $\{1,2,3,4,5,6\}$. The tiles are symmetric, so [x|y] and [y|x] is the same tile and appears only once.

Show that it is impossible to form a line of all 21 tiles such that the adjacent numbers of any consecutive tiles coincide like in the example below.

(b) What happens if we replace 6 by an arbitrary $n \ge 2$? For which n is it possible to line up all $\binom{n}{2} + n$ different tiles along a line?

Directed Graphs

Motivation: Task Scheduling with Dependencies

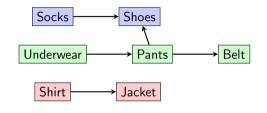
Real-world problem: Getting dressed in the morning!

Dependencies:

- Socks \rightarrow Shoes
- ullet Underwear o Pants o Belt
- ullet Shirt o Jacket

Valid order:

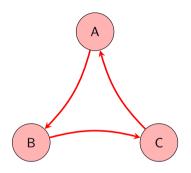
Underwear, Shirt, Socks, Pants, Belt, Shoes, Jacket



Question: Can we always find a valid ordering? What if there are circular dependencies?

When Ordering is Impossible

Circular dependencies create problems!



Directed cycle: $A \rightarrow B \rightarrow C \rightarrow A$

Problem:

- Each node has a predecessor
- No valid starting point!
- Cannot produce a linear ordering

Key Theorem (Preview)

A directed graph has a topological ordering if and only if it contains no directed cycles.

Definition: Directed Graphs

Definition 2.1 (Directed Graph)

A directed graph (or digraph) G = (V, E) consists of:

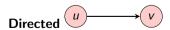
- V: a finite set of vertices
- $E \subseteq V \times V$: a set of **ordered pairs** called **directed edges**

We write $(u, v) \in E$ for a directed edge from u to v.

Important difference from undirected graphs:

- Undirected: $\{u, v\} = \{v, u\}$ (order doesn't matter)
- Directed: $(u, v) \neq (v, u)$ (order matters!)

Undirected u



Terminology for Directed Graphs

Definition 2.2 (Successors and Predecessors)

For a directed edge $(u, v) \in E$:

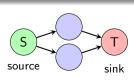
- \bullet v is a **successor** (Nachfolger) of u
- *u* is a **predecessor** (Vorgänger) of *v*

Definition 2.3 (In-Degree and Out-Degree)

For a vertex $u \in V$:

- $\deg_{in}(u) := |\{v \mid (v, u) \in E\}|$ is the **in-degree** (Eingangsgrad)
- $\deg_{\mathrm{out}}(u) := |\{v \mid (u, v) \in E\}|$ is the **out-degree** (Ausgangsgrad)

- A source is a vertex with $deg_{in}(u) = 0$
- A **sink** is a vertex with $deg_{out}(u) = 0$



Paths and Cycles in Directed Graphs

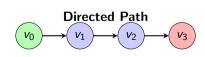
Definition 2.4 (Directed Path)

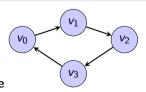
A **directed path** from v_0 to v_k is a sequence of vertices (v_0, v_1, \dots, v_k) where $(v_i, v_{i+1}) \in E$ for all $0 \le i < k$.

Definition 2.5 (Directed Cycle)

A directed cycle is a directed path where:

- $k \ge 1$ (no self-loops)
- $v_0 = v_k$ (starts and ends at same vertex)
- All other vertices are distinct

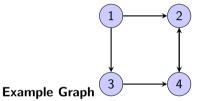




Directed Cycle

Representing Directed Graphs

Both adjacency matrix and adjacency list work for directed graphs!



Adjacency Matrix A

$$A[u][v] = \begin{cases} 1 & \text{if } (u, v) \in E \\ 0 & \text{otherwise} \end{cases}$$

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Adjacency List

1: [2, 3]

2: [4]

3: [4]

4: [2]

Note: Matrix is generally not symmetric for directed graphs!

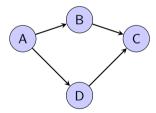
Topological Sorting: The Problem

Definition 2.6 (Topological Sorting)

A **topological ordering** of a directed graph G = (V, E) is a linear (total) ordering of vertices v_1, v_2, \ldots, v_n such that:

$$(v_i, v_j) \in E \implies i < j$$

In other words: all edges point "forward" in the ordering.



Valid: A, D, B, C Also valid: A, B, D, C

Applications:

- Task scheduling
- Build systems (Makefiles)
- Course prerequisites
- Compiler dependency resolution

When Does a Topological Ordering Exist?

Theorem 2.7

A directed graph G has a topological ordering **if and only if** G is acyclic (has no directed cycles).

Intuition for " \Leftarrow " (acyclic \Longrightarrow topological ordering exists):

- If there are no cycles, we can find a **sink** (vertex with no outgoing edges)
- Place the sink at the end of the ordering
- Remove it and repeat recursively
- This always works because each step maintains acyclicity

Question: Why must an acyclic graph have a sink?

Algorithm 1: Recursive Sink-Finding

function TopSort(G = (V, E))
 if V = ∅ then
 return empty list
 end if
 Find a sink v in G
 Let G' = (V \ {v}, E') where E' = E \ {(u, v) | u ∈ V}
 L ← TopSort(G')
 return L with v appended at the end
 end function

Correctness:

- Each recursive call places a sink at the end
- All edges from other vertices point to sinks we've already placed
- By induction, produces a valid topological ordering

Runtime: $O(|V|^2)$ if finding a sink takes O(|V|) time each call.

Can we do better?

Alini-Quiz Assignment Directed Graphs **Topological Sorting** Depth-First Search (DFS) Peer Gradir

 $\triangleright \deg_{\text{out}}(v) = 0$

Your Turn: No Backward Paths in Topological Orderings

Claim: Let G = (V, E) be a DAG with topological ordering v_1, v_2, \ldots, v_n . If i < j, then there is **no** directed path from v_i to v_i .

In other words: you cannot go "backward" in a topological ordering by following edges.

Prove this claim:

Strategy: Use proof by contradiction and assume i < j but there exists a directed path

$$v_j \rightarrow v_{k_1} \rightarrow v_{k_2} \rightarrow \cdots \rightarrow v_{k_m} \rightarrow v_i$$

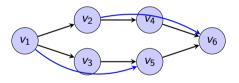
Time: 3-4 minutes

Understanding DAG Structure

What does this tell us?

Key Insight

In a topologically sorted DAG, all edges point "forward" in the ordering, and there are **no paths that go backward**.



Blue edges "skip ahead" but still go forward

Consequences:

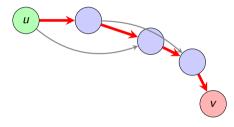
- Can process vertices left-to-right
- When processing v_i, all vertices that v_i depends on have been processed
- Enables efficient algorithms (e.g., shortest paths in O(|V| + |E|))

Application: This structure is why we can compute shortest and even longest paths in DAGs in **linear time**—we just process vertices in topological order!

A Better Approach: Using Depth-First Search

Key insight: Instead of repeatedly finding sinks, we can use DFS!

Observation: When we start at a vertex u and follow a path as far as possible (without repeating vertices), where do we end up?



Path from u to v

Claim: If we follow an unmarked path as far as possible, we must end at a vertex v where:

- All successors of v have been visited, OR
- v has no successors (is a sink)

If the graph is acyclic, v must be a sink!

This gives us an efficient way to find vertices to place at the end of our ordering!

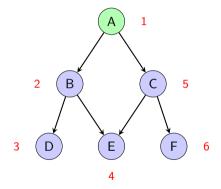
Depth-First Search (DFS)

Depth-First Search: The Idea

Strategy: Explore as deeply as possible before backtracking

Algorithm sketch:

- Start at a vertex u
- Mark u as visited
- For each unmarked successor v:
 - Recursively visit v
- When no unmarked successors remain, backtrack



Visit order: A, B, D, E, C, F

Key property: DFS explores one branch completely before moving to the next!

DFS: Formal Algorithm

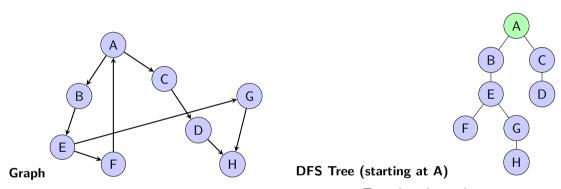
```
1: function DFS(G = (V, E))
1: function Visit(u)
                                                          Mark all vertices as unmarked
2:
      mark 11
                                                    2.
      for each successor v of u do
                                                          for each u \in V do
3.
                                                             if u is unmarked then
         if v is unmarked then
4:
                                                   4.
             Visit(v)
                                                                 Visit(u)
5:
                                                    5:
         end if
                                                             end if
6:
                                                   6.
7:
      end for
                                                          end for
  end function
                                                    8: end function
```

Why the outer loop in DFS?

- The graph might be disconnected
- Starting from one vertex might not reach all vertices
- We need to ensure we visit every vertex

Result: Creates a DFS forest (collection of DFS trees)

DFS: Visual Example



Tree edges shown above

Observation: The recursion naturally creates a tree structure!

DFS Runtime Analysis

Theorem 2.8

DFS runs in O(|V| + |E|) time when using an adjacency list representation.

Proof Idea.

Work done per vertex:

- Each vertex u is marked exactly once
- When visiting u, we iterate through all its successors
- Time for visiting u: $O(1 + \deg_{out}(u))$

Total time:

$$egin{aligned} \sum_{u \in V} O(1 + \mathsf{deg}_\mathsf{out}(u)) &= O\left(\sum_{u \in V} 1 + \sum_{u \in V} \mathsf{deg}_\mathsf{out}(u)
ight) \ &= O(|V| + |E|) \end{aligned}$$

DFS with Timestamps

Enhancement: Record when we enter and exit each vertex

```
1: function Visit(u)
        pre[u] \leftarrow T; T \leftarrow T + 1
        mark u
 3.
        for each successor v of u do
 4.
            if v is unmarked then
 5.
 6:
                Visit(v)
 7:
            end if
        end for
 8.
        post[u] \leftarrow T: T \leftarrow T + 1
10. end function
 1: function DFS(G)
       T \leftarrow 1
        (mark all unmarked, loop over vertices)
 4. end function
```

Timestamps:

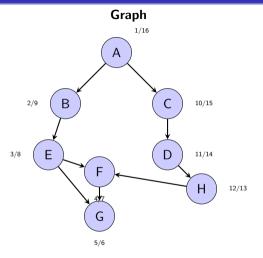
- pre[u]: when we first visit u
- post[u]: when we finish exploring from u

Interval notation:

$$I_u = [\mathsf{pre}[u], \mathsf{post}[u]]$$

These intervals reveal important structural properties!

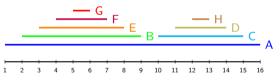
DFS Timestamp Example



Pre/Post orders:

Pre-order: A, B, E, F, G, C, D, H **Post-order:** G, F, E, B, H, D, C, A

Interval representation:



Nesting property: Intervals either nest (one contains the other) or are disjoint!

DFS and Topological Sorting

Theorem 2.9

If G is acyclic (a DAG), then the **reverse post-order** from DFS gives a topological ordering.

Why does this work?

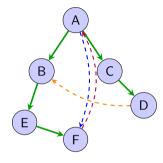
- ullet When we finish exploring from vertex u, all vertices reachable from u have already been finished
- So post[u] comes after all descendants of u
- If $(u, v) \in E$, then v is explored before we finish u, so post[v] < post[u]
- Reversing post-order puts *u* before *v*, as required!
- 1: function TopologicalSort(G)
- 2: Run DFS on G, computing post-order numbers
- 3: **return** vertices in reverse post-order
- 4: end function

Runtime: O(|V| + |E|)

Edge Classification in DFS

For edge (u, v):

- Tree edge: *v* is unmarked when explored from *u*
 - Forms the DFS tree/forest
- Back edge: $I_u \subseteq I_v$
 - Points to an ancestor
- Forward edge: $I_v \subseteq I_u$
 - Points to a descendant (not via tree edges)
- Cross edge: $I_{\mu} \cap I_{\nu} = \emptyset$
 - Connects different branches



— Tree, - - Back, - - Forward, - - Cross

DFS for Cycle Detection: A directed graph has a cycle \iff DFS finds a back edge!

Cycle Detection Using DFS

Theorem 2.10

A directed graph G contains a cycle if and only if DFS discovers a back edge.

Proof Sketch.

 (\Rightarrow) : Suppose G has a cycle $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k \rightarrow v_1$.

- Let v_i be the first vertex in the cycle visited by DFS
- When exploring from v_i , we must eventually reach v_{i-1} (the predecessor in the cycle)
- But v_i is still "active" (not finished), so $I_{v_{i-1}} \subseteq I_{v_i}$
- Therefore (v_{i-1}, v_i) is a back edge

(⇐): Suppose DFS finds back edge (u, v) where $I_u \subseteq I_v$.

- v is an ancestor of u in the DFS tree
- There's a tree path from v to u
- Adding edge (u, v) creates a cycle

Your Turn: DFS Interval Property

Claim: In any DFS of a directed graph G, for any two vertices u and v, exactly one of the following holds:

- $I_u \cap I_v = \emptyset$ (intervals are disjoint), OR
- ② $I_u \subseteq I_v$ (interval of u is contained in interval of v), OR
- $lackbox{0}$ $I_v\subseteq I_u$ (interval of v is contained in interval of u)

where $I_u = [pre[u], post[u]]$ and $I_v = [pre[v], post[v]]$.

Prove this claim:

Hints:

- Without loss of generality, assume pre[u] < pre[v] (i.e., we visit u first)
- There are two cases to consider: Is v visited before we finish exploring from u?

Time: 4-5 minutes

DFS - Your Friend and Helper

You are given an undirected graph as an adjacency list. Implement:

- hasCycle(n, E): Detect if the graph contains a cycle
- isReachable(E, u, v): Check if there's a path from u to v
- OcuntComponents (E): Count the number of connected components

Setup:

- Download the template from my website
- Copy Main.java to CodeExpert's "Welcome" exercise
- Copy custom.in and custom.out to corresponding files in "Welcome" exercise (in the public/directory)

Questions?

Peer Grading

Peer-Grading Exercise

This week's peer-grading exercise is **Exercise 8.3d-f** Please follow the usual process:

- Grade the assigned group's submission.
- Give constructive feedback and upload your feedback to Moodle by 23.59 tonight, at the latest.
- Contact me if you don't receive a submission to grade.